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CHAPTER ONE — INTRODUCTION AND LITERATURE SURVEY

General

The purpose of structural design is to develop & structure which will
safely perform its intended functions at an acceptable cost. For struc-
tural purposes, these functions are ultimetely expressed in terms of
forces or loads which the structure must support. However, other con-
siderations such as esthetics and cost mey restrict the general form of
acceptable structures.

Safety is assured by insisting that the structure should fuaction
without excessive deformétions and that either 1) the stresses do not ex-
ceed a certain fraction of the ultimate strength of the material, or 2)
the loads do not exceed a certain fraction of the ultimate loads for the
structure.

The determination of what constitutes an acceptable cost varies
greatly. Even the definitions of the terms by which the costs are to be
assessed (such as monetary expenditure, construction effort, time re-
guired for comnstruction, weight, volume, special materials or construction-
al techniques required, and possibly, operating expenditures) are likely
to vary from time to time for eacn lccation, and for structures of
different purposes.

The process of arriving at & simultaneous statement of the form of
the structure and the loads to be supported is more of an art than a
science on account of their mutual influence. Little has been written
gbout this process. Torroja (39) has written what is probably one of the

finest philosophical expositions of the process. Otto (23) has gone



deeper into a discussion of the very reasons which motivate man to build.

After the general form of the structure and the loads are defined, the
design process is still complex and requires great experience as the loads
are still affected by variations in the design. Finally, experience is
also required in judging the structure and its costs as acceptable.

Optimum structural design technigues assist the designer by allowing
him to determine directly the form of the structure that will support the
loads with the minimum cost. Such knowledge, when available, is invaluable
in deciding if the additional cost of alternative designs is warranted in
view of their additional features.

The purpose of this dissertation is to explore the conditions under
which three-dimensional structures achieve their least volume, and culmi-
nate in the development of methods suitable for the structural optimization
synthesis of nonplanar latticed roof structures.

It is necessary, for proper development of the theory, to contrast
conventional structural design end optimum structural design procedures,

and to review at some length certain concepts to be used later.

Conventionel Structural Design
As opposed to the elusiveness of the art of design as discussed above,
the analysis of structures (and stress analysis of structural components)
has been developed into a science. There is a considerable body of knowl-
edge available, expressible in useful mathemetical equations, in the theory
of structural analysis. These mathematical tools allow the structural
analyst to determine uniquély and with acceptable accuracy the stresses and

the deformations of the structures he analyzes.



It is not surprising then, in view of the mathematical tools avail-
able for analysis, that structural design has traditionally been an
iterative process where: 1) the geometry of the structure is assumed on
the basis of an informed guess and the loads determined, 2) the structure
is analyzed, and then, 3) the geometry is modified on the basis of the
results of the analysis. This process continues until the structure is
deemed to be of an scceptable cost not worthy of further refinement.

The structure resulting from the above process is only as economical
as the informed guesses have been. It is almost certainly not the most
economical of all possible alternatives.

There is no intent here to slight the great accomplishments of struc-~
tural designers. The informed guessing is based on the experience of the
entire human race. Otto (23) considered this constructional experience as
a component of the evolution of man. In addition, he reported that since
nature provides, in some organic structure, examples of structural forms
of the greatest known efficiencies, these forms are now being studied for
possible application in structural design. Prager (27) also commented
that the human femur shows a trajectorial system remarksbly similar to a
pattern developed by using minimum weight optimization techniques. In
the past, designers have undoubtedly been using such comscious or uncon-
scious observations of nature to guide their informed guessing.

Still, in the conventional design by iterative process, it is only
the designer's experience and that of his predecessors which form the basis

for his deciding whether the final structural cost is acceptable.



Optimum Structural Design

In contrast to conventional structural design, optimum structursal
design methods leave the geometry of the structure as varisble (within a
class of structures) and formulate the problem in terms of the desired
structural behavioral constraints {stresses, buckling, and deformations).
There will be a range of possible geometrical solutions that satisfy the
constraints. An optimization technique is then used, usually with the
objective of minimizing a certain cost, to select the optimum geometry
among those possible.

In classical optimum structural design procedures, the behavioral con-
straints are satisfied only one at a time. Thus, the optimum strue-
tural design procedures can be classified, according to Barmett (2), into
1) Strength Designs (elastic or plastic), 2) Stability Designs and 3)
Stiffness Designs. He also pointed out that no analytical solution appears
feasible fcor the simultaneous satisfaction of all three kinds of con-
straints since the problem becomes extremely complex. In addition, it
should be roted that analytical methods are used to optimize the structural
form only with respect to a single system of loads. The system may con-

sist of a multiplicity of loads, but all must be simultaneously applied.

tability designs

Stability designs are based on the concept that, if the structural
elements to be designed are subJect to buckling, then the minimum weight
(cost) is obtained when the elements are so proportioned that all the possi-

ble buckling modes occur simultaneously. This 1s a very powerful method



amenable to straight forward solutions for the conditions postulsted. For
an exeample, see Gerard (14). The stability design method, however, is not
likely to yield an e&bsolute minimum. The very fact that the elements are
subject to buckling feilure, may in itself indicate that the problem has
been too narrowly defined and that some configurational modification, if

permissible, may result in a design not limited by buckling and with lesser

weight (cost).

Stiffness designs

Stiffness design methods are, as their name implies, particularly
well suited when the reguirement is to design a structure with one or more
deflection limits. These methods are most useful in developing the
material properties to be considered in choosing the best material among
those available. If the deflections in question are proportional to the
loads being considered, then stiffness designs are identically the same as
those resulting from strength design methods (Barnmett (2)). This is
logical and o be expected since, as shown by Cox (10), strength designs

provide the least deflection possible under the given loads.

Strength desZgns

Strength design methods are based on the philosophy that the
lightest structure will be one in which all the structural elements are
stressed to their maximum alloweble values (Barnett (2)). That such is
the case for statically determinate structures cen be easily verified. It
is not so readily apparent that this shbould be so for statically indeter-

minate structures optimized with respect to a single system of loads. It



is felt that the difficulty in showing that the optimum is a fully stiressed
design (even for hyperstatic structures) resides in that the geometry of
the structure is usuaily given in terms of its unloaded configuration.
Conseguently, the requirements of compatibility of deformations unneces-
sarily complicate and obscure the optimization process. It has been shown
that in many cases the optimization process reduces a hyperstatic struc-
ture to a2 static one as the redundant members vanisn (Cox (10)). In other
cases, it has been shown that it is possible to replace static structures
with statically equivalent hyperstatic structures, also fully stressed, of
the same but not lesser volume (cost) (Prager (27)). It is hoped that the

theorem to be developed in this dissertation will shed some light on this

nt.

=8
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In plastic strength design, the optimum structure is achieved when
Gesigned to ve Jjust at the point of collapse, through a continuous collapse
zode such that the dissipation of energy per unit volume is constant

throughout the entire structure (Barnett(2)).

Numerical solutions

No review of structural optimization methods would be complete without
discussing at some length the numerical procedures that have become possible
with the advent oI computers.

Any structural design provlem can be formulated as a generalized opti-
mization problem in which a certain objective function is to be optimized
supject to a certain set of constraints. Because of the nasture of the con-
straint equations, structural optimization provlems are usually nonlinear.

Tnerefore, the development of suitable structural optimization methods has



closely followed the development of nonlinear programming methods in
operations research. Conceptually, each constraint equation describes a
surface in an N-dimensional space that corresponds to the N parameters to
be varied. The global optimum occurs where the surface described by the
objective function has its minimum (maximum) value and just touches (or is
tangent to) the surface of the solid bounded by all the constraint sur—
faces. Schmit and Kicher (31) applied this concept to the structural opti-
mization problem. Their formulation is general enough to be applicable to
structures subject to multiple systems of loads and to the use of different
materials.

Since linear programming problems are readily solved, many structural
optimization methods seek to linearize the constraint equations. Ander-
heggen and Thurlimann (1) linearized the constraints in the optimization
of a skew highway bridge, continuous over several spans, by expressing
them in terms of the moment at each section rather than in terms of the
stresses as is more often done, and by assuming the cost to be proportion-
al to the resistance required of each member. Moses (21), amd Romstad and
Wang (28) linearized the constraints by epproximating each parameter by a
single term of its Taylor series expansion. This has also been called the
"eutting plane method".

Another approach to deal with the nonlinear programming problem has
been to develop certain algorithms for directed iterative search procedures
in the feasible space, and for accelerating the convergence of such pro-
cedures. Among the algorithms used are the alternate steps method of
Schmit and Kicher (31), the gradient projection method used by Brown and

Ang (6), and the steepest descent and side-step procedure of Dobbs and



Foelton (Le).  Crockett (11) used a seguential unconstrained minimization
technique, developed by Fiacco and McCormick (13), which combines the con-
straint equations with the objective function to generate a new function.
A computer program for the solution of the general nonlinear programming
problem, based on the same technigue, has been written by Spos;to and
Soults (35).

Distinct advantages of numerical optimization procedures are that they
permit the satisfaction of the three constraints (strength, stability,
stiffness) simultaneously, as well as the optimization of a structure with
respect to multiple systems of loads. Using these methods, Schmit (30),
Kicher (16), and Romstad and Wang (28), proved that the optimum structure
for mulitiple systems of loads need not be fully stressed. Soosaar and
Cornell (34) used numerical methods to optimize, topologically as well as
geometrically, zmultistorey buildings for minimum monetary cost. The
sensitivity of the resulis to changes of materiai-to-fixed-cost ratios is
also investigated therein.

Two difficulties exist with numerical optimization procedures. First,
there is ofzen a loss of grasp of what is happening in ithe optimization
process. Thus, the designer is apt to feel ill st ease as he no
longer has a clear "feel" for the way in which changes in design parameters
uffect the behavior or the cost oi the structure. (The sensitivity analy-
sis of Soosaar and Cornell mentioned above 1is an attempt to restore this
"“eeling", while Kicher (16) advocates the use of Lagrangian multipliers so
that the designer can at least know which constraint or constraints are

operative at the optimum solution.) Secondly, because of the nature of the



constraint equations, it is not possible, in most practical cases, to
provide clear proof that the optimum found is a global optimum and not
merely a local optimum. The most usual way to provide some assurance that
the global minimum has been found is to start the optimization process at
different points in the feasible space and verify that subsequent trials
either, converge to the solution already considered to be the global opti-~
mur, or else, to other local optima no better than the global.

A limization of numerical optimization techniques is that the struc-
turai form whose geometry is to be optimized must be very explicitly de-
fined. The optimum found will apply only within that class, and there may
be no indication that an acceptable change in structural class may result
in large changes in the value of the optimization objective function. To
guard against the possibility of excluding from consideration a particu-
larly efficient class of structures, it is best to define the class as
broadly as possible. This requires an increase in the number of variables.
Consequently, the complexity of the problem and the computational demands
grow rapidly, while the assurance of having found a global optimum de-

creases.

Cotimization objective

Wnile it is obvious that the functional requirements of a structure
should not e compromised in optimization, surely no designer will insist
tnat there is no range of variations possible in meeting the needs. Nor
will he insist that the fulfillment of the needs, and even the beauty of
the structure is completely unrelated to its structural concept or its

efficiency. Torroja (39) cormented that a properly designed structure
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should convey the feeling that the loads are supported in a clear, uncom-
plicated manner and "without discomforts". Although he pointed out that
the most beautiful structure is not necessarily the most efficient struc-
turally, he did say: |

"There are exceptional cases, but in general it can be stated

that in any given circumstances, the condition of the least
cost or the greatest economy should always be observed and

respected." (Torroja (39)).

Even if the least cost structure is not to be selected, it would be
desirable to know what its form is and what its cost is. This information
serves as a standard in judging the cost to be paid in deviating from the
least cost form.

In this dissertation, the quantity of material will be the sole cri-
terion by which relative structural merit will be judged. Volume will dbe
the measure of the quantity thereby eliminating the need to consider mate-
rial properties. If least weight rather than least volume is desired as
an optimization objective, it is a simple matter to modify the basic equa-
tions by meking use of the material properties. The use of least volume
as the optimization objective is consistent with usual obJectives in
strength design methods, and there are a number of reasons which justify
it.

Other measures of efficiency or cost, such as monetary expenditure,
although important, are likely to change. Otto (23) pointed out that
costs are likely to be higher for new structural systems through lack of
experience in the design and construction techniques and in estimating.

He stated that consequently, total energy consumption (material, man-

hours, erection time, maintenance, etec.) is a better yardstick since in
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the lcng run the structure requiring the lesser energy expenditure will
probably be more economical. He also considered lighter structures pref-
ereble as being more adaptable, with structures thought of as massless
being the ideal. Smith and Wilson (32) pointed out that large, massive
structures usually imply high cost, and that in some cases such as dams
the cuantity of material is the critical factor in determining the eco-
nomic cost. Cox (10) stated that least weight is the obvious criterion
there being no point in using more material than is required, and since
normally other costs follow weight when even the operating cosf is usually
less for lighter structures. In some siructures, such as aerospace stiruc-

tures, the weight may in fact be the critical factor.

Conceptual Review of Strengtn Optimization Design
This dissertation will develop a theory that is more closely related
t0 strengih design methods. It is thus necessary to review some concepts

and theorems of strengtnh design metnods to be referred to later.

Gaiileo's studies

It is generally accepted that the theory of elasticity had its origin
with the studies of Galileo, in 1638, into the configuration of beams of
constant strength (Barnett (2), Wasiutynski and Brandt (40)). Thus, the
conceptual basis of strength design optimization methods is as old as the
theory of elasticity itself, and es old as

"... the notion of force and the laws of mechanics as a

foundation for designing structures." (Wasiutynski and
Brandt (40)).
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Maxwell's theorenm

In 1869, Maxwell (19) developed from statics (and also through the
use of a hypothetical dilatation of space) what has come to be known as
Maxwell's theorem, appliceble to framed structures. Mathematically, and
in the notation used in this dissertation, the theorem can be expressed as

follows:

Il - JT L = [Fi-H (1.1)
t c i

where T, and T; are the numerical values of the forces in typiceal com=-
pression and tension members, respectively; L, and Ly are the lengths of
such members; Ei is a typical external force vector (reaction inclusive)
acting on tae structure at point 1; and ;i is the position vector of the
point 1 wita respect to an ervditrary origin.

If eaca strut or tie is proportioned so that it is stressed to its
alloweble limit f, or fi, then considering that in general, if A is the

area of the xember,

T=1fA,
equation 1.1 can be written as
£. V. = fo Ve = ) Fi.F (1.2)
*t 't ‘e Ye <i-%1 .

where Vc and Vt are the total volumes of all the compression members and
all the tension zexbers, respectively.

The significance of Maxwell's theoremx, and, in particular, of the en-
suing eguetion 1.2 hes been amply discussed by Owen (25). Noting that the
total volume of a structure, Vg, Is

Vm = Vt + Vc 9 (l. 3)

-~
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use of eguation 1.2 can be made to express “I as follows,

v =V 1+¢f/f + k /T !
T c ( c/ t) n 't ’ J (1.%)
or, vT = vt (1 + ft/fc) - km/fc

where, following Owen's notation, km is used to denote Z§i.§i. Since
the volume cannot be negsative, equations 1.4 indicate that, if km is posi-~
tive, the minimum volume structure will be one with no compression members,
i.e. VC =0 , if this is geometrically possible. Then V¢ = Vg = km/ft°
Conversely, when km is negative the minimum volume structure would
be an all compressive structure, if this is possible. When k; is zero,
equation 1.2 indicates that an &ll tension or all compression structure is
not possible. In such a case,

fo Vo = £ Vg , and, if £, = £, , Vo = Vi

Thus, when k (or in';i) is zero, Maxwell's theorem does not help

in deterrmining Vm of the least volume structure.
L

Micnell structures

In 1904, Michell (20), recognizing the limitations of Maxwell's
theorem, developed the conditions to be fulfilled for the volume of a
tension-compression framework to be & minimum. Zquetions 1.2 and 1.3 can
be used to yield the expression

2r,t Vo = (£, + £{EV, + £V} + (£, - £,) IFi.mg (1.5)

Michell notad that, for any given value of ZFi.ri > the minimum total

volume, VT’ will be obtained by insisting that the quantity within the
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brackets be & minimum. Thus, since £V = ZTL,

VTmi => {IT4Iy * 1Telel |min (1.6)

To develop the conditions that must be fulfilled by a structure for
its volume to be a minimum, Michell then postulated a virtual deformation
of the domain occupied by the structure such that, while the supports are
not displaced, the domain is dilated by +e along tension members and by -e
(a2 contraction) along compression members. Furthermore, he postulated
that nowhere in the domain is the dilatation greater than +e or less than
-e. By computing the change in strain energy under such a virtual defor-
mation, Michell proved that, if the structure is such that it can be sub-
Jjected to a deformation as described above, then no other statically
equivalent structure can have a lesser volume, provided, of course, that
all members are fully stressed.

It is obvious then, that in a Michell structure, the members must lie
along lines of principal strains te in the virtual deformation strain
field. Compression members must be orthogonal to tension members. Mem-~
bers carrying stresses of the same sign may meet at any angle since the
deformation in that portion of the domain is then an isotropic expansion
or contraction.

Michell considered the structures resulting from the gpplication of
Maxwell's theorem as special cases wherein the geometry of the loads is
such that all compression or all tension structures are possible and thus
the Michell strain field is then an isotropic expansion or contraction.

Some examples of Maxwell structures are shown in Fig. 1.1 and of

Michell structures in Fig. 1.2.
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ANCA AN

a. Static. . Hyperstatic. ¢. Mechanism.

Fig. 1.1. Maxwell structures of equal volume.

S

e. Least volume for central b. Structure restricted to
load. lie entirely sbove sup-
poris.

¢c. Centilevers.

Fig. 1.2. Michell structures.
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Cox (10) has made a detailed study of Michell strain fields and con-
cluded that they can all be generated by a single kernel, and, that it is

very probable that no Michell strain fields exist in three-~dimensional

space.

Templeman's note

In 1966, Templeman (36) suggested that the lower limits on the volume
of Maxwell/Michell structures holds only in the case of structures made up
of uniaxially stressed members. If the structure can be made of a combina-
tion of uniaxially stressed members and of sheets stressed biaxially

by stresses of like sign, and, if maximum shear is the criterion of fail-

ure, then, according to Templeman,
b

Vp= TIFgry -V (1.7)
where Vb is the volume of the amount of material stressed biaxially.
Templeman pointed out that this is true, from a philosophical point of
view, because the biaxially stressed material is now being utilized twice.
He demonstrated that it is feasible, in some cases, to add loads to a
structure (accepting a change in Xﬁi';i) to make possible the use of
biaxially loaded sheets and thereby reduce the volume of the originsal

structure. He concludes that, potentially,,

b _ 1 o=z =
Vp = Vg = E—E-Zpi.ri (1.8)
in a fully biaxially loaded structure, and, potentially,
= y° = L SF. .3
Vo = Vg = . IF; .15 (1.9)

in a fully triaxially loaded structure.
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Scope of the Dissertation

This dissertation will include:
1. the derivation of a new unifying theorem for three-dimensional bodies
(the generaslized counterpart of Maxwell's theorem for frameworks) which
underlies and linxs the observations of Maxwell and Templeman, and from
which it 1s possible to deduce the conditions for least volume structures
with respect to a single system of loads (chapter two),
2. the detailed development of methods suitable for the optimum struc-
turel syntnesis of nonplenar lattice type strucvures, and the development
of general methods for the optimum structural synthesis of shells with
suggestions of the lines along which detailed procedures could be develop-
ed (chapter three),
3. the presentation of several examples which iliustrate the applicability
of the methods, nemely, the optimum structural synthesis of rectangular
grid lattices, of network domes, of Schwedler-like domes, and of a para-
boloidal shell, with and without itension rirngs (chapter four), and
L. +the presentation of a sequence of alternate structures synthesized
for the support of the same loads to illustrate the relationship between
uniexially stressed and bviaxially stressed structures and the transitions

between them (chapter Tive).
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CHAPTER TWO - THEORETICAL DEVELOPMENT

Theorem of Zero Absolute Potential Energy

Mathematical derivetion

Let a generalized, three-dimensional structure be subjected to a
single system of loads, Fi’ which is in external static equilibrium. See
Fig. 2.1. A small differential element of volume of size dx, dy and 4z
can be depicted in a generalized state of stress as shown in Fig. 2.2.

Let the structure be replaced by an equivalent system of molecules,
each concentrated at the center point of the corresponding differential
element of volume. For the system of points to be statically equivalent
to the original structure, each point will be considered to be held fixed
in space by forces of attraction or repulsion between it and the adjacent
points. Suca forces will be equal To the resultant of the normal stress
acting on the face (of the differential element of volume) that separates
the two points. Thus, if Q, is tThe force in {the x direction,

& = ox dydz (2.1)
Similar relations apply to the other faces and normal stresses. In addi-
tion, each point or molecule is acted upon by three twisting couples,
each equal in magnitude to the resultant of the shear stresses acting on
opposite faces multiplied by their separation distance.

Assume now that the space occupled by the egquivalent systen of points
undergoes an imaginary dilatation of magnitude e which is constant in all
directions. Assume further that all forces in the system remain constant
throughout tze dilatation. Because the dilatation is constant in all

directions, the structure and all its parts are not distoried and remain
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Fig. 2.1. Generalized structure.
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Fig. 2.2. Differential element.
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alwgys simiiar to their original configuration, having changed only in
size. Since the forces remain of constant magnitude, and their relative
orientations remain unchanged by the dilatation, the statical equilibrium
of the external system of forces is not disturbed. Similarly, the internal
ecuilibrium of all the points is not disturbed, and the forces acting on
all the molecules remain constant. Only the relative distances between the
molecules are changed.

If the dilatation is &assumed to have occurred adisbatically so that
no energy enters or leaves the system, then the internal work done by the
forces acting beiween the points plus the work done by the external force
system, i, during the dilatation must be egual to zero.

In computing the work done by the internal system of forces the
couples need not be considered because the relative orientation of each
point with respect to the others is not disturbed and therefore the couples
do no work. ©Noting that the original distances between the points are dx,
dy and &8z, <he center to center distances of the elements, the differential
element of work, dﬁi, done by the Iorces between the points is

@y = -(Qge dx+ Qe dy +Q, e dz). (2.2)

where Qx, Qy and QZ are assumeé to be positive if tensile, and e is as~

sumed to be positive if causing expansion of the space. Using expressions

similar to expression 2.1, equation 2.2 becomes

aV; = -efoy + oy +0,) dx dy dz - (2.3)

Tne total work done by all the internal forces between all the points of
the entire equivalent structure is

Vi = -—e fz Iy fx (o + 0y +0,) ax &y dz , (2.%)
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'or, with a change of variables,
‘}i = -e [V (o, + oy *  0z)dV, (2.5)
where V is the volume of the structure.

In the derivation of equation 2.5, body forces were assumed to be non-
existent. If there are body forces present, they give rise to terms in
equation 2.5 which are similar to those presently to be derived for the
work done by the external forces. Consequently, the body forces, if pres-
ent, may be assumed to be part of the load system Fi.

Now consider the work done by the system of loads, Fi, during the
dilatation. A single force of the system is shown in Fig. 2.3. Such a
force can be represented by its three components X;, Y and Zi paraliel to
the x, ¥y and z azxes respectiively.

For computational convenience assume that tThe origin is so selected
that it does not move during the dilatation. Then the displacements of 1,
the point at which Fy acts, in {the x, y and z directions are exj, ey; and
ez, respectively.

Thus, the work done by the single Force, F;, during the dilatation is

.ex: + .ey. + .
Xlexl Y]_ey:L Zez:L

or, e &yxs + Ysys o+ Zizd
and the total work done by the external system of forces, ‘.’e: is
Ve = g e t}&ixi et Yiyi + Zizi } (2,6)

In vector notation, equation 2.6 can be written as

v = Z e :E“i.i'i (2.7)
i



22

a.

Force, Fi'

rig. 2.3.

b. Components of force, Fi.

Single force of tue Fi system.
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Either equation 2.6 or 2,7 can be used as convenience dictates when

actual computations are to be made. For computational ease, equation 2.7

can also be expressed as

Ve = Ye Fy r; cos ©
i

where F5 and r; are the scelar magnitudes of the vectors F; and r.,

(2.8)

(ri is

the radial Gistance between the origin and point i), and © is the angle

between the two vectors.

It can easily be shown that ?i.fi is positive for all forces directed

away from the origin and negative for all forces directed towards the

origin regardiess of their position in space.

Equatirg to zero the sum of the right-hand sides of eguations 2.5 and

2.7, and rearranging,

fV (eo, + eo, + eqc,)av = g e F,.%,

or, cancelling the constant e

IV (0 + 0y +9; )&V = z fi-ri:
i

or -
fv o &+ [ Ao+ [ o av = g Fi.ry

(2.9)

(2.10)

Eguation 2.10 is the mathematical expression of a new theorem pro-

posed here for the first time. The theorem will be called the "Theorem of

Zero Absolute Potential Energy" for reasons to be discussed after a dis-

cussion of the general valicdity of expression 2.10.

Generel validity of the theorem

The mathematicel derivation of the theorem required four assumptions:

1. that the system is in external and internal equilibrium
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2. that a constant dilatation of the space takes place,
3. that the forces remain constantv, and

4, that the dilatation is an adiabatic process.

Assumptions 2 and 3 are coansistent with assumption 1, the preservation of
equilibrium, as was shown in the derivation. Neither of assumptions 2 and
3 vlace any restrictions on the applicability of the theorem. The dilata-
tion was merely a device to derive the theorem. The validity of the
theorem does not depend on the dilatation. In assumption L the term adia-
batic is used advisedly because the requirement is that no energy enter or
leave the total system during the dilatation. Thus, all four assumptions
reduce to a single one, the preservation of statical equilibrium, as the
only condition that must be met for equation 2.10 to be valid. The mathe-
matical statament of the theorem is derived in the appendix directly from
the equations of equilibrium and without any other assumptions. Equation
2.10 is considereé to be a different statement of but equivalent to the
equations of equilibrium,

Since cx + gy + o, is a constant for any point and invariant
with respect to the coordinate system chosen, it follows that the lef
hand side of thne eguation is invariant with respect to the axes or origin
chosen. Obviously the same is true for Zéi';i’ as can be quickly veri-
fied by computation of Zfi.fi,'with respect to different origins, for
any conveniently simple system of loads in equilibrium. This invariancy
of each of the two sides of eguation 2.10 can be used to computational
advantage since, if convenient, different origins and coordinate systems

mey be chosen for their separate evaluation. thermore, if convenient,
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the structure may be subdivided into several segments and the terms compu-
ted by using a different coordinate system for each segment. In such a case

the equation could be rewritten as
n ;’ _
g av, + jo_dav, + f o 4v, = F..r. 2.11
DOSp vy wlg ey« fo @) = D55 (2.11)

where the integrations are to be carried over each element, j, of the n
elements of the structure. For computation of z Fi.fi different origins
can be used for each set of loads which is by itself in equilibrium (as for

example one for all the vertical force components and another for the hori-

zontal force components).

Conceptual Physical Meaning of the Theorem

General

The mathematical expression of the theorem (equation 2.10) has an
interesting form in which the terms involved have units of work, or more
generally, of energy. The earliest uses of energy principles in structural
engineering, in the form of the principle of virtual work, can be traced
back to Jean Bernoulli. But Cheriton (9) reported that it was also used
inplicitly by Jordanus de Nemore in the thirteenth century. Energy prin-
ciples have been, in one form or another, the starting points for <ne
solution of an innumeravle host of important structural and mechanical
problems. A good historical review of energy principles in elastomechanics
is giver by Gunhard AE. Oravas in tzae introduction to a recent, translated
edition of Castigliano's principal work (Castigliano (8)). The physical
significance of many of these {heorems is sometimes not well defined, and

sometimes no physical meaning can be ascribed to their indisputably correct
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mathematical definition. It is well known, for examplie, that complemen-
tary energy aas no physical meaning (even though in the case of linearly
elastic structures it is mathematically but not conceptually equivalent to
internal worx). Neal (22) reported that the exact nature of the principle
of wvirtual work itself is subject to debate, and he considered its usualiy
given physical meaning as an aid ©to memory. Thus, it is nol uncommon that
a useful and correct mathematical expression is found first, and its nmean-
ing, in physical iterms, is sought only after its derivaticn. Such concep-
tualization is most useiul as it usually reveels remarkeble similarities
among until then unrelated pnenomera and thus permits advances to be made
in one field of knowledge by analogy with another. This section will
develop a conceptual physical meaning of equation 2.10 and thus explain

the reason for the title chosen for it.

Zero absoliute potential energy

A1l the terms of equation 2,10 rave units of energy. Conceptually
then, they can be considered to be a measure of some kind of energy.
This energy will be given the name of "absolute potentiel energy'. The
total absolute potential energy oI the system is composed of that of the
structure ard that of the system of loads. If U, is used to denote This
total absolute votential energy of the system, then

O = [fo,av + fo,&V + [og&v- §F;E,
and, if the system is in static ecuilibrium,

U,

= 0.
It is this last ecueslity tnat expresses what 1s considered to be the con-
ceptuel physical significence of tue theorem which can be stated as

foilows.
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THECREM: The absolute potential energy of a siructure-load

system in internal and external static equilibrium is

always zero.
The word eabsolute is used to distinguish this conception of potential
energy from its more common meaning. For the structure, it is not a
measure of energy stored through deformation but rather can be thought of
as the energy equivalent of the stressed material itself. For the forces,
the potential energy is referred to a single point, the origin selected,

and with respect to the selection of which such absolute potential energy

is invarians.

Observations with respect to shear

An interesting feature of equation 2.10 is that it does not include
any terms with units of energy arising out of shear stresses. A possible
explanation mey be found in the observation that a shear stress pattern
can always ve expressed in terms of the corresponding normel principal
stresses at the point. In addition, it is interesting to reflect on the
fact that although shegr stresses cannot exist without normal stresses on
some other plane through the same point, the reverse is possible., Thus,
it may be hypothesized that in general the shear pattern is dependent on
the normal stress pattern which is in turn dictated by the system of loads
on the structure. Conceptually then, shear stresses mey be regarded as
arising out of a geometric deficiency of the structure that prevents the
structure from supporting the loads by purely normal stresses. In that
case, shear must arise o preserve internal equilibrium and to "bend” the

stress trajectories. t could then be expected that shear stressed struc-



28

tures are less efficient than structures which support the load system
purely by normal stresses.

Shear stresses must be present whenever Z Fi.ii is zero by itself
since then, at some point in the body, at least one of the stresses |
( Ogy Oy OF cz) in the left hand side of equation 2.10 must be of a
different sign then the others for the ecuation to apply. When 2 fi°;i
is not zero and an all compression or an all tension structure is possible,
equation 2.10 is sufficient to uniguely determine the volume, given the
stress pattern (assuming, for example, a Tully stressed structure). When
z fi.ii is zero, however, equation 2.10, although valid, is not sufficient
to uniquely determine the volume (given the stresses) since both sides of

the equation are separately equel to zero. It 1s then necessary to know

-

ct

more aboutv its geometry.

Michell structures can be thought of as shear structures (skeleton
flexurel or torsicnal siructures) where, for efficiency, the material has
been concentrated along the lines of principal stress trajectories. It is
thus not surprising that to find a Michell structural layout is primarily
& geometric exercise which is eguivalent to determining the geometry of
the principal stress trajeciories to carry the loads. This seems to ex-
plain the pessivility of existence of several Michell structures for the

same systen of loads, some more efficlent than the others in accordance

with the relative efficiency of ithe respective stress trajectories.

Derivation of Mexwell, Michell and Templieman'®s Results
Since the theorem is generally applicable, ii showld be possivle to

derive Maxwell's theorem, the MicLell conditions and Templemen's results
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from it, This will be done forthwith.

Derivation of Maxwell's theorem

Consider a generalized framework of n bars, which is loaded by a sys-
tem of m loads (Fi)' If the system is in equilibrium, equation 2.11, re-

written for convenience, applies directly to yield:
m

n - -
) (jJ o &V, * jj o AWy + fj o, &V, )= [ Fr;
j=1 i=1

For each bar, j, select a coordinate system such that the x axis runs
along the centerline of the bar. In such a case, assuming constant dis-

tribution of stress throughout the cross section,

Ty T

= — o - - 3-9

oxlj A'lj r GXIj A lj ’

and (2.12)
dVJ. = Aj dSZ.J. ) oy = Op = 0]

where dzj is the differential element of length, and all other symbols

are as previously defined.

Substituting equations 2.12 into 2.11, the result is

k Tt n Te, n
I f = A ag. + - =+ A d. ) = F. .5,
=1 Aj J 23 j=£+l £ { Aj dJd lJ ) izl i 3

where for convenience the k tension members and the n-k compression num-
bers have been collected under the appropriate summation signs.
Simplifying and integrating.

¥ 7, L, - JT,L, = { F.%y (2.13)
t c 1

Equation 2.13 is the mathematical statement of Maxwell's theorem as

can be determined by comparison with equation 1l.l.
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Derivation of Michell conditions

Having derived Mexwell's theorem from the theorem herein presented,
it is obvious that it is possible now to proceed in exactly the same manner
as Michell, and as outlined in chapter one, to develop his conditions for

minimum volume of a structure.

Derivation of Templeman's results

Assume that a structure is under static equilibrium in the face of
an external system of loads also in static equilibrium. Assume further
that such a structure is composed of uniaxially stressed elements and bi-
axially stressed sheets. For clarity refer to Fig. 2.4 where a typical
structure suggested by Templeman is shown. The structure shown in the
illustratior is planar, as all of Templeman'’s examples were, but it is
emphasized that the derivation to be made here, using equation 2.11, need
not be restricted to planar structures and would apply as well to three-
dimensional structures such as a shell., In all the planar structures of
Templeman, since the sheet is to te uniformly stressed in all directions,
the uniaxially stressed members must always be arcs of circles.

Rewriting equation 2.11 for convenience,
m

n
P (] oy av, jjfcy w, :fj'oz )= [ F.5
=1 i=1
Imagine now the generalized structure to be divided into k uniaxially
stressed members and n-~k sheets under biaxial stresses. Egquation 2.11 can
then be written as

k n m

Ll oo jan, + I ( fo av + ggy av,) = ] F.E (2.24)
=1 jekl Y 1=l



31

Fig. 2.h4. Typical Templeman structure.
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where it is implied, by the appearance of the first term that coordinates

will be chosen for its integration so that

% = %, 9, = 9, = 0.
Such & coordinate system could be curvilinear, and for the typical struc-
ture shown in Fig. 2.4 the origin would be at the centers of the circular
arcs. It is emphasized that this is done strictly for convenience and is
not a prerequisite to the validity of the equation. A Cartesian coordi-
nate system could also be employed in which case 0y and 0y would be the
x and y components of 0; while 0, = O. In such a case, de would also
have to be expressed in terms of the same Cartesian coordinate system.
Thus, it is the convenience of expression of de that is being considered
in the selection of the coordinate system, and not necessarily colinearity
with the stresses.

For least volume, Templeman assumed that, if maximum shear strength
is the criterion of failure, and if the stresses in the sheet are of like
sign, then the least volume of the structure is obbained when all the
stresses are constant and equal to the maximum allowable stress ft or f,.
Note that, if the sheet is in tension, so must be the arched members and

vice-versa. Therefore, in equation 2.1h replacing Ox» Oy and o, by T,

and, dividing throughout by f, the result is

k n m
T foav. + I (f av, + [ av.) = : § F..E . (2.15)
=N R S U N R £ "1

But noting that f de = V_, and that the elements 1 to k are the uni-
axially stressed and the k+l to n are the biaxially stressed, equation

2.15 can be written in the equivelent form
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.7, (2.18)

where V¥ denotes the volume of the uniaxially stressed members of the

structure and Vb, as before, the volume of the biaxially stressed sheets.

Or,

. b
v, = 1 ) F.E - (2.17)
1

F

for which use is made of the identity
v, o=V + v
where VT is the total volume of the structure.
Equation 2.17 is Templeman's assertation here proven in a more rig-
orous manner. His other assertions with respect to fully biaxially or
fully triaxially loaded structures (see equations 1.9 and 1.10) could be

derived just as rigorously.

Applications and Significance of Theoren

The theorem is so general that the full range of problems where it
will be useful can be neither predicted nor foreseen at this time. Con-
ceptually, equation 2.10 could ve used to develop the general conditions
to be fuifilled for minimum volume structures, to develop the optimum
form for a rarticular structure, to test statical equilibrium, and so on.
In this dissertation the theorem will be used to develop the least
volume conditions leading up to a hierarchy of structures according to
structural efficiency, and it will also be used in several sample struc-
tural optimization problems.

Interestingly, in some of the examples dealing with open-top shell

domes, equation 2.10 was found not to apply in the first try. A re-
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cramination of the statical equilibrium of those problems disclosed that
those particular shells would not be in equilibrium under the assumed
stress distribution and that either localized bending would have to be in-
cluded in tae computation of equation 2.10, or that a stiffening ring
would have to be applied. To preclude bending the stiffening rings were
applied and in every case equation 2.10 could then be shown to apply
identically, thus illustrating a possible use of the equation in checking

the correctness of assumed stiess patterns as suggested in the previous

paragraph.

Significance as pertains to least volume

Equation 2.11 is rewritten for convenience,
Y ([oav + [o,av + foav) = F;.T (2.18)

where o o, and o, have been replaced by o1 g, and o3 to

x? y

indicate that the coordinate system used for each element may be local
instead of global.

It is obvious, observing equation 2.18, that for any single value
of § ﬁi'ii not zero (and of course for a given system of loads), the
absolute minimum volume will be obtained when 0;, 0, and o3 are all
of the same sign and numerically as large as allowable everywhere
throughout the structure, if such is possible. In that case, if f is

the allowable stress for the material when stressed triaxially,
) F..T.. (2.19)

Equation 2.19 was, as mentioned before, first proposed by Templeman

(36). Since equation 2.19 was derived from eguation 2.18 which applies
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to hyperstatic as well as to static structures, this is considered to be a
mathematical proof, heretofore considered so elusive as discussed in the

Strength designs section of chapter one (see also Barnmett (2)), of the con-

cept that the fully stressed structure, static or hyperstatic, is the least
volume structure for a single system of loads. Equations similar to

equation 2.19 can be writiten for the two and one dimensional stress states

by letting 01 = 0 or Gé = 9, £ O respectively. Then,
b = L F. .7 (2.20)
Vij_n 57 Z Fl.rl,
and, v2 = 1 JF.% (2.21)

Tnin r i i
where £, in each case, is the maximum allowable stress for the stress
state existing in the structure. Comparing these last three equations it
¢r be seen that, for generally comparable systems of loads, a triaxially,
fully and homogeneously stressed structure would have a lesser volume than
a uniaxially stressed structure, assuming of course that sucn structures
are possible for the given loads. Here the term "hamogeneously stressed"
is used to denote that all stresses in the structure are tensile, or
that all are compressive.

Continuing to assume that . ﬁi';i is not zero, it can be shown thet
structures which are not bhomogeneously stressed will have lesser efficlen-
cy than the corresponding homogeneously stressed structures. That this is
so for uniaxially loaded structures was shown by Owen (25) as discussed in
chapter one. For bilaxielly loaded structures, when Z fi.fi is not zero
it is not possible for the structure to be fully stressed everywhere with

tresses of different signs since if this were so the left side of equa-

tion 2.18 would vanish. Thus, assume that g1 1s everywhere equal to the
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meximum allowable stress. Assume further that o, has some value, variable
if desired, but less than the allowavle and everywhere of different sign
then o, . For biaxially stressed cases,
fo,av + [o,av = [F.r.
Now replace 0, by its known value, £, end o0, by -z, where g is the
ebsolute numerical value of ©0,. This yields,
fv- [g,av = §F.F

and
+ [ ¢, av. (2.22)

Comparing eguation 2.22 with eguation 2.20, it can be seen that the homoge-
nously stressed structure agein results in a lesser volume. For a tri-
axially stressed structure, it could be shown, by a similar procedure,

that the homogeneously stressed structure has lesser volume. Further-
more, in the case of a triaxially loaded structure, if it is possible to
have the structure fully stressed everywhere but with one stress component
of different signs than the others, then

- tay + frav o+ [eav = ] F..

But, since thae structure is fully stressed, 21y, T & = t3 = 1T,

[

and the Tirs: two terms cancel out, leaving

I
t~
by

[ gpev

or
Vv =

Hh1po

Trerefore such structure would not be any better than a unlaxially stressed
structure (assuming that the allowable stresses, f, and the systems of

loads are comparable).
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The above comments are predicated on z Fi'ii not being zero.

Should Z Fi'ii be zero, barring the trivial case when the forces are con-
current on a point or on a line (in which case no structure is necessary
to preserve equilibrium and VT = 0), then homogeneously stressed struc-
tures are not possible. As discussed earlier in the observations with
regard to shear stresses, when Z Fi'fi is zero, the forces are either
parallel or couples. In that case shear must be present in a biaxially or
a triaxially stressed structure, and at least some portion of the struc-
ture must have one stress of different sign than the others for the left
hand side of equation 2.18 to be zero. These structures will be referred
to as of a "mixed state of stress.” Uniaxially, biaxially and triaxially
stressed structures in a mixed state of stress will be separately con-
sidered.

Uniaxially stressed structures in a mixed stress state can be fully
stressed. In that cese, if ft and fc are the same, the total volume of
the tension members will be the same as the total volume of the compres-
sive members. For minimum volume such structures would be Michell struc-
tures. It will be shown in a later section that if the geometric restric-
tions (that make the use of a Michell structure mendatory if least volume
is to be achieved) are relaxed, then it is sometimes possible to decrease
the volume. Thus, Michell structures are not considered as efficient as
those in which it is possible to have a homogeneously stressed structure.

Biaxially stressed structures in a mixed state of stress mey also

be fully stressed. This corresponds to a structure in which the entire

structure has stresses of different signs in two orthogonal directions at
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each point. An example of this would be a hyperbolic-paraboloidal shell.
For this case equation 2.18 is insufficient to assess the structure's rel-
ative merits with respect to homogeneously stressed structures. However,
since uniaxially stressed Michell structures (in a mixed state of stress)
can sometimes be shown to be less efficient than homogeneous structures if
the geometry constraints are relaxed, it is presumed, intuitively that, if
geometry is relaxed, it may also be possible to reduce the volume of a bi-
axial, mixed, and fully stressed structure by replacing it with a fully
and homogeneously stressed structure.
Triaxially stressed structures may not be fully siressed if

) #;.F; is zero. Wmen F;.7; is zero, the requirement that the left
hand side of eguation 2.18 vanish makes it imperative that if one of the
stresses, say cl, is everywhere equal to its maxirum allowable value,
then the other two must be of a different sign and less than thelr maxi-
mum allowable value. (This again seems to confirm, as discussed earlier,
that no Michell strain fields exist in three-dimensioms.) Structures of
this type do not utilize the material to ifs full capabilities and must
be considered less efficient than itriaxially stressed structures in &
mixed state of stress when |} fi.fi is not zero since in this latier case
it is conceptually possible to fuily stress the materiel in all directions.

Beams, and other flexurel menmbers in & biaxial state of stress are

special cases of xixed stressed structures, generally with Z Fi.fi = 0,

b

n waich it is not possible, in practical cases, to achleve the allowable
stress everywhere for eitner O  or 02. These structures must be con-

sidered the least efficient of all mixed stress state structures with
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Hierarchy of structures

The discussion of the preceding section can be summarized in an
ordered hierarchy of class levels of increasing efficiency (or decreasing
volume) according to the state of stress existing throughout the struc-
Ture.

Tne possibility of devising some such classification was suggested
by Otto (23) who published a chart in which the structural forms were
classed wita respect to the type of action (bending, tension, compress-
ion) used to support the loads. In the same chart he indicated, empiri-
cally, whetaer more or less material is required in their execution.

A hierarchy of structures based on the previous section appears in
Fig. 2.5 where only the most efficilent member of each stress state condi-
tion is shown. The symbol + (or -) is used therein to signify that the
particular siress is everywhere ecual to the meximum allowable stress in
tension (or compression). It is certainly not implied that it is possi-
ble to desizgn a structure to fit a specific stress condition for any
given system of loads. Indeed, it is expeeted that in general the sys-
tem of loads must be somewhat changed to substitute a design of a gener-
ally more efficient level for one of another level, if such substitution
is possible.

Two additional points to be kept in mind when looking at the nler-
archical levels of Fig. 2.5 are:

1. All structures are actuelly three-dimensional and consequently

the lines that separate one structural level from another cannotv bve
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clearly drawn. Thus, & structure can be more clearly ascribed to one
level rather than another the more exactly it fulfills the requirement of
that level.

2. 1In moving towards the more efficient levels, often more of the
loads are passed to the supports (or are passed to them more efficiently).
Thus, it cannot be generally said that any one level is superior to a
preceding level in a true economic sense. It can only be said that
structures of the higher levels (exclusive of supports) are lighter than
those of preceding levels when supporting comparable load systems.

The hierarchy of structures shown mey not include every possible
case. However, it can be used to state three general guidelines:

1. Tully stressed structures are more efficient (provide lesser
volume) than comparable not fully stressed structures.

2. tructures in homogeneous states of stress are more efficlent
than coxparable structures in mixed states of stress.

3. Triaxially and homogeneously stressed structures are more effi-
cient than comparable biaxially stressed structures which in turn are

more efficient than comparable uniaxially stressed structures.

Significancs as perteins to hyperstatic structures

The applicability of the theorem is not restricted wita respect to
the degree of redundancy of a structure. It applies to hyperstatic as
well as to static structures. Consequently, the theorem indicates that,
if all paris of the structure are fully stressed, then the volume re-
guired to support a given system of loads is the same for a hyperstatic

or a stabic structure. (This was noted (in chapter one) to be the case



L2

for the Maxwell structures of Fig. 1.1l). The theorem further indicates
quite generally that the least volume structure, optimized for a single
load system, is a fully stressed structure (static or hyperstatic). The
actual volume required depends on the intensity and geametry off the loads
) ii.ii), and on the allowable stress in the material.

Since eguation 2,10 applies to the loaded structure, the geometry
used should also be that of the structure under load. Conseguently, upon
removal of the loads, there will generally be residual stresses in hyper-
static structures due to lack of fit of the unstressed elements of the
structure. However, when subjected to the design loads, such structures
will pe compatible and fully stressed. Such geometrical prestressing,
using the geometry of the loaded structure in the design process, is
similar to tae reverse deformation method advanced by Rozvani (29), and

to the load valancing method of T. Y. Lin (17).

Concept of ootimization by variation of ) sy

As discussed in chapter one, the loads and the structural form are
interrelated, a change in one implying a change in the other, Thus, it
is most logical to assume that the locations of tne loads may be varied
in some permissible fashion (say along their lines of action), and the
reactions may be allowed to vary in magnitude as well as orientation so

as to preserve equilibrium, in order to opiimize or reduce the volumre

of the structure. It must be pointed out that in general this mzkes it
necessary for the supports to be resistant to horizontal thrust as well

as vertical loads. This is not considered a major drawback of the con-
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-cept. If a2 tension ring is used, and it is desired to consider its volume
as well, the method can be modified to do so. How this can be done is
discussed in chapter three.

The minimization process can be conceived as being composed of two
generalized steps. First, a topological optimization is made transform-
ing the structure from one class to a more efficient class, and second, a
geometrical optimization is made within the second class.

For illiustration, consider a Michell structure as shown in Fig. 2.6
(radial members are omitted from the sketch for clarity). Then, assume
that it is now permissible to raise the load and force it to act on the
structure at a higher point as shown in Fig. 2.7. According to Cox (10),
the volumes of the two structures are identically the same, a curious
feature of such Michell structures. Note however, that for the structure
with the raised load, Z f‘i.i‘i is no longer equal to zero. Thus, except
for the parallelism of the forces (according to equation 2,10, or from
Maxwell®s theorem) the least volume structure, since 2 'r-:'i.i'i is nega-
tive, would be one devoid of tension members, i.e. an all compression
structure. t is only recessary to relax the geometrical conditions on
the loads (supportis) at A and B in Fig. 2.7 and allow them to rotate.
Then the minimum volume structure would be a two strut structure as shown
in Fig. 2.8. By expressing ) F..P; in terms of this new load system
the structural form transformation is effected. The volume of this new
structure will be less than that of the original Michell structure pro-
vided that the rotation of the support reactions does rot unduly numeri-

4

cally increase ) Fs.F;. The numerical value of ] F;.F. should be
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minimized by suitably selecting h. Such a minimization of ) f‘i.f‘i will
not result in a return to Zf‘i.i'i = 0 if Zf‘i.f'i has been properly
expressed. That this is so will be presently shown mathematically.

The volume of the Michell structures of Fig. 2.6 and of Fig. 2.7 can

be computed to be (as shown for example by Cox (10)), if fi = -f, = f;

m|=!

vV o= %(1 + =) P-g— (2.23)

Solving for X in terms of P and h, the value of Zb:i.i'i can be com-

puted, for the structure of Fig. 2.8, as

2
S Fem o= P L_&I:_ + b ] (2.24)

Setting the first partial derivative of Zf‘i.ii with respect to h
equal to zero, the minimum numerical value of Zf‘i.i'i can be shown to
occur when h is equal to L/2.

Substituting this velue in equation 2.2k, and making use of equation
2.11, or of Mexwell's theorem, the volume of the new all compression struc-
ture of Fig. 2.8 can be computed as

vV = + L (2.25)
T

Comparison of eguation 2.25 with 2.23 shows that the volume of this
structure is about 1;/ 5 that of the Michell structure. If the absolute
veiue of the maximum allowable tensile stress is greater than that of the
corpressive stress, then & lowering of the load would still yield a lesser
volume for the modified structure than for the Michelli structure.

A plot of equation 2.24 is shown in Fig. 2.9. It is easy to see
that it is not possible to return to Zf’i.i'i = 0 since no homogeneosly

stressed structure is possible then. As h approaches zero, z Fi.rs
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aproaches #» ,

Several investigators such as Cox (10), Owen (25), and Templeman (36)
have similarly noted that the volume of structures can sometimes be re-
duced by adéing loads (hence changing y Fi.fi). Owen, who also consid-
ered the two strut structure of Fig. 2.8 and noted its greater efficiency
than the corresponding Michell structure, elso used this method of varia-—
ting J Fy.7; to invesfigate the most efficient sag-to-span ratio of
suspension vridges.

It is not entirely clear under what general conditions (if such
exist) this result is attainable. Conceptually and physically, the rais-
ing of the load in going from the structure of Fig. 2.6 to that of Fig.
2.7 is equivalent to allowing an increase in the volume of the compression
members and an exactly equal decrease in the tension members (so that
the total volume is not changed), while et the same time allowing Z Ei';i
to vary in such a way &s ©t0 maintein the eguality of equation 2.11.
Coriceptually, and, less clearly physically, the rotation of the reactions
corresponds to & continuing decrease of the tension volume, accompanied by
a lesser increase in the compression volume, until the tension volume
vanishes.

Although attempted, it was not possible to prove conclusively in this
dissertation that this second variation is always possible, or under what
geometrical conditions it is possible. If such & modification is physi-
cally possible within the same general class of structure so that the
systems of loads remain comparable, then, obviously the volume of the

final, homogeneously and fully stressed structure (all tension or all
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compression) will be less than that of the original mixed-stressed
(tension and compression) structure.
If the modification is possible only by a transformation of the

structure to a different class, then the system of loads on the new class

may not be comparable to that of the first. Consequently the volume of

the new class structure will be less only if ) E_‘i.ii has not been un-
duly increased to force the new class of structures to apply. This will
be illustrated in the third alternative design of the sequence of examples

in chapter rive, and will be discussed in the section on Comparison of

volumes of that chapter.
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CHAPTER THREE - METHODOLOGY FOR SOME OPTIMAL
STRUCTURAL DESIGN PROBLEMS

General

Loads

This chapter will outline a general methodology which can be used
(with the theorem developed in chapter two) in optimel synthesis of three-
dimensional structures. The specific methodology to be developed will be
applicable to structures which must support vertical loads, but in which
the vertical loads may be raised to any point above the level of the
supports. Thnis type of load system arises in many practical cases such
as roofs. In those cases, the primary loads usually are vertical (con-
centrated or distributed live load and distributed dead load); while the
secondary live loads may or may not be vertical (& man walking on the
roof, wind loads). For some structures, of course, wind loads may be
Just as severe or more severe compared to other loads. But since they
are variable, they do not constitute a singlie system of loads and the
method to be developed will not then be applicsble. Furthermore, since
the wind loads are more or less infreguently applied, it does not seem
justifiable, except in rare cases, to optimize a structure with respect
t0 & single specific wind load. For roofs of dome shape, Benjamin (3)
considered the self load and the snow loads to be the primary loads in
the preliminery design. Having considered the snow loads as primary
loads, the other live loads were ignored. Finally, the preliminary

design was modified by accommodating the additional wind load effects.



General forms of structures

As discussed in chapter two, least volume structures are homogenous-
ly and fully stressed.

The only frameworks that can be homogeneously stressed under the
loads to be considered are lattices or tension nets of cables, if the sup-
ports are allowed to absorb the thrusts of the structure. As will be seen
in the illustrative examples of chapter four, the minimization process re-
sults in structural shapes of high rise (or sag) -to-span ratios. It is
difficult to provide sufficient rigidity to high sag tension structures.
Because of <his, and because of the desirability to have some rigidity in
the structure against loads other than the ones Ifor which it was optimized,
only compression structures will be given further considersation.

Perenthetically, it should be noted that shallow and very rigid all
tension structures are possible (not considering the supporting compres-
sion ring) by draping cables into nets describing an anticlastic surface;
or into two surfaces of opposite curvature and joined by short vertical
cables. Such nets, however, are kXept in tension under load by high pre-
stressing forces. Under load, the tensile stress in one of the two sets
of cables is decreased, thus this set can really be considered to act as
a set of compression members (Zetlin (4L1)). If the large prestressing
forces are Included as part of the load system, then 2 §i°;i becomes
positive as it should be for an all temsion structure. Whether or not
such a net of cebles, excluding the compression ring, is of lesser volume
than the structures obtained by the methods advanced in this dissertation

depends on the relative magnitudes of the respective 2 Fi.Ei. For
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the cable supported roofs being considered, the prestressing forces must be
high and consequently ) F;.r; will probably be higher than for a compara-
ble compressicn structure. Thus, tension nets will not be considered any

further.

Application of the Theorem_and the
Concept of Varisble J Fyorg

Generalized formulation

The generalized loading system used in this dissertation is shown in
Fig. 3.1. The optimization problem to be solved can be defined as follows.
Find the vertical coordinates, zj, for a specific lattice or shell, which,
when loaded with the system of loads, Py, results in the least volume lat-~
tice or shell. Mathematically, this is a programming problem where the
objective function is
Vigin = &(a;)|nin (3.1)

to be minimized subject to three sets of constraints;

statical equilibrium, h(Fi, T35 Qs %4> ¢3) =0 5 (3.2)
geometry and stresses, k(Q;, 0y, a5, £) =0 3 (3.3)
and, compatibility of deformations, p(Q, o35 65) =0 . (3.4)

The objective function, equation 3.1, is normally one of geometry with
veriables in it, a3, such as the areas and lengths of the members in the
case of lattices, or with thicknesses and differential elements of length
or area in the case of shells.

The coastraints similar to equation 3.2 include all the equations of

equilibrium of all parts of the structure, and, generally, include such
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Fig. 3.1. Loading system used.
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varisbles as all the forces in the system (internal, Q;, and external, F;)
and the necessary geometric variables such as lengths, £;, rj, and angles,
¢4 -

The constraints similar to equation 3.3 are needed to relate the geo-
metric variables of the objective function to those of the constraints of
equilibrium. Therefore, these constraints will generally include those of
the objective function and those of the equilibrium conditions, as well as
other variables such as stresses, 0;, and the allowable stresses, f,
(usually constant) in the structure.

For statically determinate structures, only the objective function
and the first two sets of constraints are sufficient to arrive at a so-
lution. In such structures (determinate) the compatibility constraints
are gutomatically satisfied. However, in the case of indeterminate
structures, the compatibility constraints (similar to equation 3.4 and
which introduce additional variables, i.e. structural deformations and
displacements, 65_) must be used in conjunction with the others to
arrive at a unique solution.

Other side constraints, such as buckling, may be part of a specific
problem. Such side constraints are not included in the set of constraints
since the method to be developed is a strength design method, and, as
discussed in chapter one, optimization in such a case is normally obtained

with respect to only strength constraints.
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Use of theorem of zero absolute potential energy

By the use of the theorem, when the structure is fully and homo-
geneously stressed, it is possible to replace the objective function by
a new equivalent objective function,

(3.5)

Vipip = I Fi-%ilpy
It is noted that this new objective function is expressed only in

terms of forces and the necessary geometric varigbles. These are the same

variables appearing in constraints 3.2.

With tnis substitute objective function the programming problem is

often considerably simplified.

Simplifications due Eg_the use of the theorem

As discussed in chapter two, the minimum volume structure will be a
fully and homogeneously stressed structure (i.e. all members everywhere
stressed toc the meximum allowable stress in compression, or all in ten-
sion). Assuming such & stress pattern to apply will in some cases reduce
a statically determinate structure to a mechanism (for purposes of design
computationsj, or a statically indetermihate structure to a determinate
one. However, since the geometry is undefined during the optimization
process, this simplification is not always assured and depends on the
specific problem being considered.

As shown in Fig. 3.1, the system of loads, F;, include the applied
loads, Pi’ and the reections, Xj and ZJ. The reeactions are dependent on
the applied loads and on the geometry of the structure. In the case of

structures which can be made statically determinate for design purposes,
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as well as in the case of statically determinate ones, it is possible to
relate these loads with only the statical equilibrium set of constraints
(equations 3.2). When the structure is indeterminate, however, they
cannot be related without meking use of the compatibility constraints
(equations 3.4) which, in turn, require the consideration of the geometry
constraints similar to equations 3.3.

In the optimization of the substitute objectife function, it is suf-
ficient to consider only those constraints which are necessary to relate
XJ, ZJ end P;. Thus, in many cases the optimization process is consider-
ably reduced since only the constraints of statical equilibrium (equa-
tions 3.2) need be considered. The number of variables involved is also
greatly reduced.

For a final design the constraints of geometry similar to equation
3.3 will eventually have to be used, but only after the optimum general
geomeitry has been determined in the optimization process. Thus, the use
of the theorem, coupled with the concept of variation of Z ii';i (see
the last section of chapter two), results in two distinet advantages when
the structure is reducible to a statically determinate one. These advan-~
tages are that,

1. the programming problem is considerably simplified by a reduction of
the constraints that must be satisfied, and

2. a detailed design of all parts of the structure need not be con-
sidered until after the programming problem is solved.

The method is limited to the consideration of & single system of

loads. Conceptually it appears, however, that it may be possible to
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modify the objective function so that multiple systems of loads can be con-
sidered. It also seems that it may be possible, from a mathematical point
of view, to specify additional side comstraints (such as buckling). Nei-
ther of these was done. It is not clear whether or not any advantages

would still ensue from the use of the theorem in either or both of these

latter cases.
Methods of Solution

Two methods of solution are generally available for the optimization
process of a statically determinate structure.

1. Classical Method. This method consists of two steps:

a. all the constraint equations of the statical equilibrium set are
used to reduce the number of variables in the objective function to & mini-
mum, and

b. the reduced objective function is minimized with respect to the
remaining variables by classical mathematical methods.
2. Numerical Method. Any suitable programming method may be used to
optimize the objective function subject to the given constraints.

When the structure is not reducible to a determinate structure by the
assumption that it is fully and homogeneously stressed, a solution may
still be possible by using an analogous structure to relate Xj, Zj and Pi,
after which |} ﬁi'fi is optimized by the classical method. Such solu-
tions however, are a minimum only for the specific class of structures
considered in the analogy, and there is no assurance that a different

class would not yield a lesser minimum.
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These methods will be discussed in more detail in the context of
lattice and shell optimization techniques below, and will be illustrated

by application to specific problems in chapter four.
Lattices of One Layer

To understand the reasons for choosing lattices of one layer to illus-
trate the application of the procedures outlined above, consider the cross
section of a generalized lattice of two layers shown in Fig. 3.2. If such
a structure is to be all under compression as is required if the volume is
to be a minimum, then the inclined members have the function of dis-
tributing the loads between the two layers. The minimum volume would be
obtained when the upper layer merges into the lower layer, the distance
betwean the two layers is zero, and the inclined members vanish. Thus,
minimum volume is obtained with & lattice of one layer. There are,
however, some marked benefits to be obtained with a two-layered lattice.
Among these are greater rigidity, greater assurance of safety against
overall buckling, and the capability to offer some bending resistance as
a safeguard against overloads. The volume of the inclined members is the
material price paid for such benefits. Borrego (4) has catalogued many
different lattice grid geometries and their combinations into multi-
layered lattice systems.

In accordance with the generalized loading system of Fig. 3.1, the

objective function can be expressed as,

DFimy | = (1 (XyTyh + ] (-Pyzgd ) | (3.6)
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v

Fig. 3.2. Cross-section of generalized lattice of two layers.
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The negeative signs indicate that a compressive structure is required.
In that cése, the stress of all perts of the structure, is ¢ = -f,, and
the volume can be expressed as
V= - %cz F; .7
Since the ebsolute value of } §i°5i is to be minimized, it is convenient
at this point to reverse the sign convention and trest inward loads as re-
sulting in positive fi';i terms, it being understood that a positive
) ?i.fi will require a compressive structure, and a negative one &
tension structure. Consequently,
Z }i'?i = Z leﬁ + Z Pyzg (3.7)
To minimize equation 3.7 it is necessary to relate X3y to P;, zj and
Lj since XJ in fact depends on the others.
To this effect, it is often convenient to note (Fig. 3.1) that,

2 Zj = Z Py (3.8)

and, since no bending is to be permitted to arise,

A
Xy = Tl (3.9)
J
while ten @5 = f(z3) (3.10)

Classical retnhod

As discussed earlier in this chapter, it is necessary when using the
clessical method, to utilize all the equations of ecuilibrium to reduce

the variables in Z F;.r; to the minimum number of independent variables.
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Let s be the total number of variables appearing in Z Ei-;i and in
the equilibrium constraint equations, and let r be the number of constraint
equations. Then the minimum number of independent variables, n, in which
) §i’;i can be expressed is n = s-r .

After Z Fi'Fi is expressed in terms of these n number of variables,

n additional equations are made available for obtaining the solution by

letting

3 ( Z Ei.f‘i)

a = O Py j = l’ 2’ 3.0' n (3'11)
3

where Xy are the remaining n independent variables. Which variables are
retained as independent is immaterial to the process, while the use of the
equilibrium equations to drive out the s-n dependent variables insures
that the solution vector will satisfy the equilibrium constraints.
However, there is no assurance that equations 3.11 will have a
simultaneous solution within the feasible region, or even a solution at
all. If the jth of equations 3.11 does not have a solution within the
acceptable limits for the given variable, xj, then the minimum 2 ﬁi'?i
will be found at one of the limits for x5 (Burington (7)). When a
simultaneous solution of equations 3.11 is not possible, or does not
Yield a solution in the feasible space, then the number of combinations to
be investigated by separately testing the limits of each variable in-
creases rapidly with the increase in the number of wvariables involved.
Therefore, this method becomes very laborious if the statical equilibrium

constraints are many, or if the number of independent variables (number of

degrees of freedom) in ) Fi';i is greater than two.
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For simple illustrative purposes consider the two-dimensional frames
for Fig. 3.3 and Fig. 3.4. In both, it is assumed that the loads P; and
the dimensions L and x; are given, but that the ordinates, zj, are varia-
ble. The optimum 2z; are to be found for minimum volume.

The § F;.T; of the first frame (Fig. 3.3) can be expressed as

Y F .7y = XL + Pz *+ Pz (3.12)
Equation 3.12 includes three variables (XO’ z, and Zz)‘ The equations of
statiecs will introduce three more variables (ZO’ Z3 and Xs). Therefore,
the total number of variables is six. There are three equations of
statics. However, note that when all the members are assumed to be fully
and homogeneously stressed, there will be no bending at points 1 and 2.
The frame becomes a mechanism and consequently z, and 2, must always be in
proper proportion for the equivalent pin-connected frame to be in unstable
equilibrium. Thus, the conditions that the moment at polints 1 and
2 be zero provide two additional equations of statics for a total of five
equations. Therefore, the optimization of this siructure is a propblem
with only cne degree of freedom (six variables minus five equations).
Consequently, prior to the optimization of equation 3.12, all the equa-
tions of statics must be used to express eguation 3.12 in terms of only one
unknown.

For the second frame (Fig. 3.l4), using node 0 as the origin, ) Fj.ri

can be expressed as

YF;.rs = XL + Pz - 2.z (3.13)
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Fig. 3.3. Frame of one degree of freedom.

Py

Fig. 3.4. TFreame of two degrees of freedom.
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Equation 3.13 includes four variables (X,, Z,, z;, and zz), and two more

(xo, Zo) will be introduced by the equations of statics for a total of six
veriebles. There are again three equations of statics, plus, this time
the condition that the moment at point 1 be zero, for & total of four
equations. The optimization of this frame has two degrees of freedom.

The equations of statics must be used to express equation 3.13 in terms

of only two variaebles prior to the optimization process.

It may be shown, performing the optimization of the second frame,
that its optimal solution occurs when the two supports are st the same
level (i.e. 2, = 0), regardless of the horizontal position of point 1.
This result may be used to illustrate an additional feature of the method.
That is, if the class (within which the optimal solution is sought) is too
broadly defined, the solution may converge on a structural form of greater
efficiency (lesser volume), not itself a member of the desired class.
(Tnis result was noted by Prager (27) in connection with other optimiza-
tion problems). Thus, if the structural form desired is ome with z, equal
to some finite value other than zero, then z, should have been so speci-
fied. Allowing z, to vary enlarges the class to a more general class
(where all values of z, are permissible) and the solution will obviously
be optimal for this larger class and not necessarily for the one
desired. The restrictions necessary to sufficiently limit the class of

structures to be considered are not so obvious in more complicated struc-

tures.
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Nonlinear programming solutions

When the number of independent variables (and the equations of statics
linking Xj, Pﬁ and z; as well) are too many, then a nonlinear programming
solution becomes useful.

In applying such a solution, equation 3.7 expressing ) F;.F; in
terms of Xj’ P& and zi (or suitable alternatives) becomes the objective
function to be minimized; There is no requirement to eliminate the de-
pendent variables from the objective function. The equations of statics
linking Xj’ Pi and 25 become the constraints to be satisfied by the
nonlinear programming technique while optimizing the objective function.
Nonliner programming techniques are required because the comstraints will,
in general be nonlinear, involving products of variables.

Nonlinear programming solutions are interesting because conceptually,
some side constraints such as buckling or other limiting factors could be

added, if desired, to the constraints of statics. This, however, was not

done on any of the examples of this dissertation.

Shell analogy solutions

When the grid system desired in the lattice makes the structure
indeterminate, it is not possible, by means of only the equilibrium con-
straints (equation 3.2), to relate Xj, L;, P4y and z; as is necessary to
ultimately express the objective function (equation 3.7) in terms of
the required number of independent variables. It will then be necessary
to include considerations of compatibility of deformations (equations
3.4) which in turn require an a priori definition of geometry and rela-

tive bar sizes.
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Since a1l that is required is a method for linking Xj, Lj’ Pi and

z:, an alternate approach is to use an analogous shell in place of the

i?
lattice structure. In so doing, the constraint conditions of the lattice
programming problem are replaced by the equations of equilibrium applied
‘o the shell, provided that the conditions required for the shell to be
analogous to the lattice are satisfied.

Because of the specific use to be made of the analogy, the only con-
ditions that must be satisfied are: 1) geometrical similarity and 2)
force resultant correspondence. It is not necessary that strains in
lattice and shell be analogous unless the same analogous shell is also to
be used to investigate deformations or residual stresses in the unloaded
lattice.

Geometric similarity is easily satisfied by assuming that the nodes
of the lattice lie on the middle surface of the shell.

Force resultant correspondence is satisfied by 1) replacing the dis-
continuous loads (on the nodes of the lattice) by either line loads or
distributed loads on the shell but with the same force resultants, and
2) by insisting that the resultants of the bar forces and of the shell
tractions on the appropriate portion or element of the shell be the
same.

The procedure to insure correspondence of the bar forces - shell
tfaction resultants is very straight forward. It is primarily a geomet-
rical procedure of assigning the bar fields. or portions of the shell
whose traction resultant must equal the particular bar force or forces.

For detailed discussions see Benjamin (3) or Parikh and Norris (26) who
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;lso discuss strain correspondence.

The establishment of the analogy requirements, when coupled with the
further requirements that equilibrium of the shell be satisfied, yields
relationships between the stresses at each poirt throughout the shell.
These relationships must be integrated to obtain a geometrical equation
describing the shepe of the shell. Finally, the equation of the shape of
the shell is used in the objective function to reduce it to an expression
in only one variable permitting the minimization of the objective functlon
with respect to this one variable by classical mathematical methods. "

Step by step the procedure is as follows:

1. Rerlace the load system on the lattice by the equivalent load
system on the shell and rewrite Fi.ri.

2. ZEstablish member force-shell traction requirements to be satis-
fied.

3. Assume all lattice members to be fully and homogeneously
stressed, and check to see if this imposes any specific requirements on
the shell tractions (i.e., if N, = £(N,)).

4. If no requirements ensue from step 3, then it is believed that,
when the loads are distributed over the surface of the shell, the assump-
tion that o, = o, = f, will result in minimum lattice volume. This
assumption is suggested since then the shape of the shell would be a
"funicular" surface for the loads.

5. Either step 3 or step 4 will result in a mathematical equation
linking N1 and Nz’ the shell tractions. Using this relationship, and

using the three equations of equilibrium for each element of the shell
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.based on membrane theory, it is then possible and necessary to obtain a
general expression for the shape of the shell (z = function of position on
the shell). It is not necessary to consider compatibility constraints.

6. Rewrite § ii'ii (equation 3.7) for the shell using the expres-
sion for z of step 5. After completion of this step 7§ ii‘;i should now
be expressed in terms of only one unknown, say the maximum ordinate (rise)
in the shell.

7. Minimize [ Fi’fi with respect to the remaining variable.

The completion of step 7 ylelds the optimum geometry for the
lattice. For a final design, the shell stresses should be computed
making use of the final geometry of the structure, and the relations of
step 2 are then used to compute the bar forces in the lattice. Ultimate-
ly, of course, as in the other two methods, the equations of compatibil-
ity must be used to specify the unloaded configuration of the structure
and its residual stresses in that state to be able to comstruct it.

In practical applications, step 5 usually will involve the use of
numerical integration procedures.

To avoid the difficultlies of numerical integration, it may be
acceptable to assume that the optimum will be of a specific integrable
shape (say paraboloidel, hyperboloidal, spherical). To do so, of
course, limits the class of structures within which the optimum is to be
found to the class selected (all members of the class of the same shape).
Furthermore., such an assumption may be incompatible, in some cases, with
the requirements of step 3, or with the requirement that all members of

the lattice be homogeneously stressed. Such possivilities should be

checked before proceeding with the assumed general shape.



It is noted that minimization of } Fi';i of the analogous shell
while yielding a least volume lattice (of that class) does not necessarily
also minimize the volume of the shell itself. The least volume shell
shape will be the same as the lattice (and obtainable by minimization of
)) fi';i alone) only if the shell is itself homogeneously and fully
stressed. Shell volume minimization is discussed in a separate section in
this chapter.

For comparison, in the examples of chapter five, the optimum ge-
ometry for lattices is found by consideration of both the lattice and the

analogous shell. The corresponding lattice and shell volumes are compared

therein.

Advantages and disadvantages of the methods

1. Classical method. This method is limited to comsideration of a single
system of loads and, from a practical point of view, to statically deter-
minate structures. It becomes laborious when the equations of statical
equilibrium are many or when the independent variables of the problem are
more than two. Within the practical limitations on the number of varia-
bles, it is better than the other methods in that it yield & global
optimum for the system of loads considered, and provides a "feel" for the
increase in wvolume that may result from deviation from the optimal solution.
This method would probably not be useful from a practical point of view
if side constraints (buckling, etc.) are part of the problem.

2. Nonlinear programming method. This method, as presented here, is

also limited to statically determinate structures and a single system of

loads. It is particularly suited for the solution of problems with s
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large number of variables and constraints. The solution formed through
its use is also a global optimum, but there is no "feel" for the changes
in the volume due to deviation from the optimal solution. It may be possi-
ble to modify and extend this method to adapt it ﬁo the consideration of
additional side constraints and multiple systems of loads, but it is not
clear whether expressing the objective function in terms of ) ii’fi will
be advantageous in those cases.
3. Shell analogy method. This method is the only one of the three that
is suitable for statically indeterminate structures. It is limited to a
single system of loads. Since a specific class of shell (conoidal, para-
boloidal, etec.) must be assumed to avoid numericel integration difficul-
ties, the solution is optimal for only that class of lattice. The
lattice therefore, is only optimel for all lattices with nodes similarly
related and it is thus not a global optimum solution for the original
problem. Nevertheless, information with respect to such restricted
optimel solutions is useful when lacking a means to obtain a global opti-

muam,

Considerations of the tension ring

The optimization process described herein assumes that the supports
are able to resist the thrust of the dome or dome-like structures.
It is only with this assumption that it is possible to design an all
compression structure. Often, however, because of the nature of the
media in which the supports are to be built, or because the structure

is to be supported by columns or walls, no such requirements can be made
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of the supports. Then, it is expedient to use a tension ring around the
perimeter of the lattice or dome to take the horizontal components of the
thrusts of the structure by pure tension. If the ring is considered as
part of the structure, then the structure is really a composite of com-
pression and tension members. Thus, it is pertinent to ask if this method
of obtaining the optimal structural form for least all compressive volume
does not do so at the expense of uneconomically large tension rings.
This question will be pursued in this section.

Consider a generalized compression lattice with a tension ring.
Such a structure is shown in Fig. 3.5 where the lattice and the ring are
shown as two free body diagrams.

If the subscripts L, R and T denote the lattice, the ring and the

total structure respectively, then, for the lattice

-V, = ( ) fi'-i)L’, (3.14)
end for the ring,
Ty Vg = (] Fi.%4)p, (3.15)

while, for the entire structure,

Vg - £,V = (] f‘i.i'i},f (3.16)
In the above and throughout the rest of this section, since tension

and compression members are involved, the sign convention for ) fi'fi

will be as originally assumed (outward loads result in positive J ﬁi.fi)

and tenslon stresses are positive.

Comparing these three equations, it is obvious that
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Fig. 3.5. Generalized compression lattice
with tension ring.
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Fig. 3.6. Graphical representation of
equations 3.14 through 3.18.
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(L FyuRy), = (1 Fpaly) + (] By (3.17)

or

(1 Fermy) = (D Femp)y - (I Fpoxdp (3.18)

The result of equation 3.18 can be verified by superposition of the
force systems if it is noted that ( } ii‘fi)T results from consideration
of the vertical forces alone, and ( § F;.%;); from both the vertical
forces and the horizontal force system of the ring on the lattice. Equa-
tions 3.1k through 3.18 are graphically represented in Fig. 3.6 against
varying rise-to-span (h/L) ratios of the generalized structure. Point A
in that grarh corresponds to the minimum volume lattice.

Fig. 3.7 shows a plot of the volumes of the lattice, the tension
ring and the total structure. In Fig. 3.7, point A denotes the minimum
volume lattice and point B the ring-lattice structure of minimum total
volume. It is apparent that if the volume of the total structure is to
be minimized, then the rise-to-span ratio must be increased beyond that
of the minimum volume lattice., For lesser rise-to-span ratios, the
thrusts are higher and thus both the volume of the lattice and the volume
of the ring increase. Since the tangent to the Vi curve at A is zero,
and VR decreases with increasing rise-to-span ratios, it is alwsys possi-
ble to decrease the total volume by small increases of the rise-to-span
ratio. For larger increases of the rise-to-span ratios, however, the
increase of the volume of the lattice guickly overtakes the reductions
due to the lesser tension ring volume and the total volume begins to
increase once more. Thus, if a tension ring is used, the possibility of

decreasing the total volume of the structure by a smell increase in the

rise-to-span ratio should be investigated, even though the reduction of
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Fig. 3.7. Plot of the volumes of the lattice,

the tension ring and the total structure versus
rise-to-span ratio.
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total volume thus achieved may not be too great. To find the point B
at which the total volume is & minimum, the function to be minimized

is VT = VL + VR’ and

1 7 = 1 = -
Vo = FoICLFLF [+ gL FaeFidgls (3.19)

or,

£y +

VT = %Iz Pizil + [—-—f-;-fiﬁ] [Z XJLJI . (3.20)

If the allowable tensile and compressive stresses of the material are
numerically equal, then equation 3.20 reduces to
= 1 -
Vp = E{ lz Pizil +212 XJL’JI} . (3.21)
Some of the examples of chapter four were optimized with and also

without tension rings in order to illustrate the method and compare the

results.

Shells Under a Membrane State of Siress

Shell examples presented

The illustrative examples of chapter four and five were selected
primarily to illustrate the application of the methods developed in this
chapter to the optimization of lattices. Therefore, the shell geometries
considered therein are contingent upon the geometxry of the lattice to
which each serves as an analogy. Those examples, although not
constituting an illustration of the methods to be suggested in this
section for shell optimization, do illustrate most of the points dis-

cussed below.

The shell example of chapter four (a paraboloidal shell) is an
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bptimum within its elass and serves to illustrate the procedures used when
numerical integration is to be avoided. In that case the selection of an
integrable shape (paraboloid) makes it impossible to have oy = fc every-
‘where. The resulting optimal solution (presented with and without tension
ring) is optimal only with respect to all other paraboloidal shells sup-
porting the same loads. It may be added that generally the easiest shapes
to construct are those whose geometry can be expressed in closed form

mathematicel expressions.

Shells g_f: gbsolute minimum volume

The expression, derived from the theorem of zero absolute potential
energy, that will be used in the search for a minimum volume shell is
fo,a&v + fo,av = § f‘i.i'i. (3.22)
When the shell is to support loads similar to those considered fgr
lattices, egquation 3.22 becomes

forav + fo,av = ¥ XL, + § Pyzg (3.23)

s
where the summations of the right side are actually obtained by integra-
tion of the norizontal component of the shell force per unit length
around the perimeter of the shell multiplied by the corresponding position
vector, and by integration of the distributed load (assumed here to be
distributed on the horizontal projection of the area) multiplied by the
differential area of the shell over which it acts and by the correspond-
ing position vector.

To obtain the global minimum shell to support a given system of loads,

it follows from equation 3.23, and from the hierarchy of structures of
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chapter two, that 0, = o0, = £ everywhere. In that case,
- L. + '
win = 55 121 X5 I Bz }min (3.24)

This volume, however, will be a global minimum only for the given
) X5 Ly and Y P; z;. It may be that in order to force ¢; = o0, =
fc everywhere the horizontal reactions, and hence Z Xj I‘j’ must be so
increased that a lesser volume would result with a structure in which
only Y; (or o,) is equal to fc. The two structures cannot be considered
comparable. In many practical cases the use of the equations of equilib-
rium (coupled with the requirement that 6, = o, = %, (or f’c)) when
substituted in equation 3.24, give rise to complicated differential equa-
tions which must be integrated prior to the optimization process. It is
suspected tha._‘t many of the resulting equations could only be integrated
by numerical procedures. The integration is equivalent to finding the
equation for the middle surface of the shell that would resist the given
system of loads by constant stress, while the subsequent optimization is
equivalent to finding the optimum rise~to-span ratio.

That shell or membrane structures under uniform biaxial compression
or tension are inherently more efficient than other shell shapes is
certainly not new. Thus, often use is made of spherical shapes for con-
tainers which must resist very high internal or external pressures, for
example, gas containers, nuclear reactor containment vessels and deep
depth submersibles. Otto (23) discussed the great efficiency of mem-

branes, and as pointed out in chapter two, considers them as the lightest

of all structural systems.
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Many different investigators have obtained the geometries required
for a shell or membrane to resist a given system of loads under constant
membrane stress in all directions. Some achieve this by variability of
the shape alone, the thickness being constant. Others have varied both
the shape and thickness. For an example of the latter (attributed to
W. Flugge), which was obtained by numerical integration, see Timoshenko
and Woinowsky-Krieger (38).

To obtain the shape required for a uniform thickness and uniform
stress shell, in 1959 Harrenstien (15) advanced the use of & soep film
analogy when complex boundary shapes are involved. The shape of the soap
film and of the shell are analogous, but the load on the soep film must
be the reverse of that on the shell. Since the socap film supports the
loads under constent tension, the shell similarly shaped and loaded with
the reverse loads will support such loads by constant compression. A
problem with such a method resides in the difficulty of applying suitable
loads to the soap film (such as, for example, distributed loads acting in
a vertical direction and not perpendicular to the surface of the soap
film)., Otto and Stromeyer (24) also used soap bubbles to determine suit-
able shapes for constant stress (tension) membranes. Brotchie (5) devel-
oped mathematical solutions for several direct design problems, some of
whkich involve constant thickness and constant stress shells.

The most promising of all, however, is & finite element method of
creating a mathematical membrane. The method was recently developed by
Smith and Wilson (32) and is conceptually the same as Harrenstien's

method mentioned above, but mathematically liberated from the physical
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;Limitations of the soap film analogy. Smith and Wilson advocated the use .
of the method to obtain shapes of shells or of dams that are more efficient
and hence of lesser volume. They were not assured, however, that they had
in fact attained the least volume shape by their method alone. To choose
the best smong several shapes of the same class they actually computed and
compared the volumes., It is felt that the theorem of zero absolute poten-
tial energy could enhance their method by providng the assurance required
that the minimum shape has been obtained, while the concept of the minimi-
zation of 2 F..F. could be incorporated into their finite element formu-

i®*i
lation of the problem to yield, in one step, the least volume shape for

the loads considered.

Least volume shells of integrable shapes

An optimum shell within a particular class of integrable shell shapes
can be found by using & slightly different objective function. This func-
tion is obtained by rewriting equation 3.22 in the equivalent form,

I
Vs 1RE - 2o, (3.25)

where it is assumed that the thickness of the shell is so selected that

6, 2 o, @&and o, = f, everywhere. The minimm volume within such &

class of shells would be one where the entire right hand side is minimized.
To minimize the right hand side, the only difficulty is the necessity

to first integrate the second term. The expression of ) f‘i.i'i in terms

of the ordinates, z, is no problem since the equation for the shape of the

shell is known.

The optimization should present no insurmountable difficulty if the
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following procedure is followed.

1. Using the equations of equilibrium, determine which of the two

tractions is larger for each region of the shell. Assume that I\T1 > Nz

everywhere,
2. Proportion the shell so that © L = i‘c everywhere. Then,
I\Iv,1
t, = —
r ]
fe
and, consequently
= N,
T~
or, g = (}.\'.2_) £ - (3.26)
2 N,

3. TUsing the latter result in equation 3.25,
1 - N
= - r. - —sdv 2
Vo= 5l Fp- T (3.27)
4, The ratio 1\T2/1\T1 will generally be a function which when multiplied

by a suitabily selected expression for dV can be integrated to yield

another funciion.

5. After the integration of step &4, it may be necessery to change the
variable in either the resulting function or in } .'b-‘i.ii so that the entire
right hand side of equation 3.27 is expressed in terms of the same
variable.

6. Minimize the entire right hand side with respect to the remaining

variable.

Completion of step 6 results in the shape of the minimm shell of the

class selected.
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The paraboloidal shell example of chapter four illustrates this
method.

Occasionally, the minimization of step 6 may be complicated as the
resulting ecuation may be a transcendental equation. However, since the
equation is of only one degree of freedom, & solution is readily obtained
in that case by graphical methods. This was done in the last example of

chapter five (although that example is ome in which « = o, = £,).
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CHAPTER FOUR - ILLUSTRATIVE EXAMPLES

General

The examples presented in this chapter are designed to illustrate the
applicability of the methods developed in chapter three (classical method,
numerical sclution and shell analogy) to optimize latticed roof structures.
Also presented is an example in which the optimization of a parsboloidal
shell roof with and without tension ring is illustrated.

Since the aim of this chapter is to illustrate the methods, the struc-
tures considered are not necessarily practical structures. For simplicity
of computations, the structures are optimized with respect to a downward
load of total magnitude W which is assumed to be evenly distributed over
the horizontal projection of each structure. Thus, extensive use is made
of symmetry as appropriate to simplify the solutions.

Tne solution of each example is carried out to the point where the
optimum geometry of the structure is determined. Thereafter, the process
of design is considered a straight forward procedure which would include:
1) determination of specific geometry (bar ereas, shell thickness, etec.),
2) determination of unloaded geometry and residual stresses (by the reverse
deformation method of Rozvani (29)), and 3) modification of the design as

appropriate to accommodate secondary loads.

Rectanguler Grid Lattices
In this example, the general formulation of the classical and
numerical solution to the optimization of a rectanguler, fixed-Jointed grid

lattice covering a rectangular area will be comnsidered first. These
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methods will then be applied to a square grid lattice.

Typical formulation

Fig. 4.1 shows a typical rectangular grid in horizontal projection
with the coordinate and numbering systems to be used.

Note that the assumption that the structure is fully and homogeneously
stressed immediately simplifies the optimization problem. By this assump-
tion, which is necessary if least volume is to be obtained (see chapter
two), the indeterminate fixed~jointed grid is rendered to be in unsteble
equilibrium with the design load.

It is pertinent to investigate the degrees of freedom of such a
structure since, as discussed in chapter three, Z Ei’;i must be expressed
in terms of only the correct number of independent varisbles (by using
all availsble equations of statics or geometry) prior to the minimization
process, to insure that the solution will satisfy geometry and statics.
The number of unknowns include:

1) two reaction components per reaction point (X and Z, or Y and Z), or
4L (m + n) reaction components;
2) one z coordinate for each interior node, ij, or m(n) z coordinates; and
3) two force components (Tz and T,, or T, and Ty) for each member, or a
total of 2[(m + 1) n + (n + 1) m] force components;
or a grand-total of 5 (m) n + 6 m + 6 n unknowns.
The number of equations available ineclude:
1) two equations of equilibrium at each reaction point, or 4 (m + n)

equations;
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8l

2) three equations of equilibrium at each interior point, or 3 m (n)’
equations; and

3) one equation per member relating its force components, Tz and Tx
(or T, and 1‘[) with the horizontal (A, or Ay) and vertical projections of
the member, or (m+ 1) n + (n + 1) m equations; or a total of 5 (m) n +
5 m + 5n equations.

Thus, in the general case, subtracting the equations from the un-
knowns, such & rectangular grid lattice has m + n degrees of freedom.

When using the classical method it is necessary to write the usual
objective function (volume) in terms of ) f‘i.ii and to use all the avail-
able equations to reduce the unknowns in z E—‘i.i'i to only a number of un-
knowns equal to the number of degrees of freedom. The expression can
then be minimized by classical methods. Alternately the original expres-
sion for 2 f‘i.i'i cen be minimized by programming procedures. Both these
methods will be 1llustrated.

The general forms of the equations are:

1) For the objective function,

= £ vF g = 1 .
v o= i LF.E = ?c{ Ll Xps + LI Yg5 *+ [ Byiy2i5) (k.1)

2) TFor the equations of equilibrium at the reaction points,

Z,. - T = 0 (4.2)
Mo Py, (34,9)
X;5 - T =0 (4.3)

*i3,(i+1,3)

and similar equations for the y grid lines.
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3) For the equations of equilibrium of interior points,

T G
_ _ (4.k)
Vs, Vi)
T, L s s | ) 8
(4.5)
where all bar forces, T, are assumed positive if compressive.
L) For the equations of geometry for each member in the x-grid lines,
= 0, (4.6)

[T‘“ij,(iﬂ,j) Moz, = 2a5] = % [Ty o s))
and a similar equation for each member in the y grid lines.

In the above equations the sign convention adopted, to simplify com-
puter applications is that the loads act vertically down and the reactions
are up and iawardly directed, while all the members are assumed to be in
compression. Thnen all the variables in the equations are positive.

Note that the volume could also be minimized by expressing the objec-
tive function as

Vo= e &,
where a; and &; are respectively the area and the length of each member.
Such formulation was used for example by Schmit and Kicher (31) and by
Crockett (11) for three bar trusses. However, the use of such straight
forward formuwlation introduces two additional unknowns per member, and
consequently, increases the number of constraint equations by twice the

number of members in the structure.
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Classical solution

For simplicity the lattice to be optimized will be a square lattice
consisting of 4 x 4 grid lines subjected to a total load, W, horizontally
distributed and allocated equally to each node, Thus, each interior node
carries an equal load, P = W/25, while a load of W/100 passes directly to
each corner support point, and'W/BO to other support points. These loads
on the supports will be ignored. Such a lattice is shown in Fig. k.2.
Because of symmetry only one-eighth of the lattice as shown in Fig. 4.3
need be considered. Such a structure, after the use of all the conditions
of symmetry, can be shown to have two degrees of freedom.

It is convenient to introduce two more unknowns P1 and z, where Ea

1
is the portion of the load P taken by grid line 1 and z, is the ordinate
1
of point 4 in grid line 1. This frees the two grid lines for independent
application of the equations of statics. Two other equations must be

added also and they are:

I
N
]
N

P + P = P, and z
1 2 4
1 2

where the subscripts 1 and 2 refer to grid lines 1 and 2.

Using these and all the equations generated by equations 4.2 through

L.6, equation 4.1 can be reduced to

2
Vo= P|liz, . &Pz, ., fuqu L & Mot (%.7)
£ P + Lp, 3P -2P, 5z, 5Pz,

[+

where the two remaining independent variables are P, and z,.

Using the classical method, Vmin occurs when,
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Fig. 4.2. Lattice to be considered.

Fig. L4.3. One-eighth of the lattice remaining
after the use of symmetry.
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¥ - E_[- 8z, . Pz, uz,z] - (4.8)
3 Te (P+4p, ) (3p-22,) 5Pz,

5V - P_[14 + 2P Lp IS .+ " R k.
2z, fc[ P+LP, ¥ 3p-2P, 5(z,, )2 5P(z, )2 (8-9)

The two equations L.8 and L.9 may have no solution within the
permissible range of values for z, and P, (24 > 0 and O <P <P). Then,
the minimum volume within the acceptable or feasible region will be found
at one of the limits (i.e. z, = Oor z, = and P, =0orP = P).

The least volume structure, if it exists, must satisfy equation 4.9
since it is obvious, from equation 4.7, that z, = 0 or Z, T w yield
infinite solutions. Thus, either equation 4.8 must also be satisfied or-
‘the minimum will be found at P, = O or P1 = P,

Evaluation of equation 4.8 at P, = P shows that it 1s positive for
all velues of z,. Therefore the .volume decreases with decreasing Pl in
the vicinity of that limit and the least volume solution is not to be
found there but with lesser values of P;.

Eveluetion of equation 4.8 at P, = O and consideration of its deriv-
ative with respect to 2, shows that it does not change sign between

.'L-"1 = 0 and P1 = P for all values of zu such that

z, < L./g = L (0.335410197).

Consequently, only two possitilities remain, either 1) the two
equations have a common solution at a z, value equal to or greater than
the one just given, or 2) P, = 0 and equation k.9 is satisfied with

Pl = O and 2z, less than the given value. It can be verified that the
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second possibility applies, and consequently, the minimm volume is ob-

tained when,

P, = 0,andz, = Lg = L (0.30382181) (4.10)

1
Using these values, equations 4.2 through 4.6 can be used to obtain

the value of all the other variables. Among them,

z=L/-6-6; 1

3
and, (+.11)
= J 2=
z, = l&Lm 1%’
and, from equation 4.7
= I /13 k.12
Vinin fe ( 16/ 30 ] (h12)

A three-dimensional plot of the surface defining the volume, V, in
terms of P; and z, is shown in Fig. 4.4. The volume, V, is plotted versus

z, for several values of P, between P, = O and P,=P in Fig. L.5. A

similar plot of V versus P, for several values of z, appears in Fig.
4.6. (These three plots were obtained using a program for an IBM 360
computer which computed the value of the volume for discrete values of z,
and P, within the range desired for them and then produced three-dimensional
views of the surface as it would sppear when viewed from any specified com-
bination of v:.ew:.ng angles.) In all three plots point A is the value of

2, at or above which ( 3V/ aPl) = O has a solution within the limits of
P,. Point B corresponds to the globel minimum (within the feasible space)
represented by the values given by equation L4.10.

FPig. 4.7 shows the shape of the minimum volume lattice.
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Fig. 4.7. Minimum volume lattice.
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Nonlinear programming solution

The use of a numerical procedure permits the optimization of equation
4.1 (the objective function) subject to the satisfaction of all the
equations of statics and geometry, equations 4.2 through 4.6 (the con-
straints), without baving to manipulate all the equations to express the
objective function in terms of only the proper number of independent
variables.

The program selected for use was AUKLET, written by Sposito and
Soults (35), which, is based on the sequential unconstrained minimization
technique developed by Fiacco and McCormick (13).

The program requires as input all of the equations defining the
problem (objective and constraint equations) as well as their first and
second partial derivetives. To avoid overflowing the computer data bank
assigned by the program, and to reduce the laboriousness of preparing the
input date, it was decided to use symmetry for the computer solution as
well., Furthermore, a separate subroutine was used to develop and feed the
computer the partial derivatives. In addition, 1) equations L4.2 were
eliminated by eliminating Z; 3 from the set of variables since it does not
appear in any other equations nor in the objective function; 2) equations
4.3 and 4.4 were eliminated (since it is obvious that they generate the
requirement that all T, and all Ty be equal to the X or Y value of that
particular grid line) by replacing T, and % in equation 4.6 with the
corresponding X and Y values.

Thus, the set of constraint equations consisted of the _three equa-

tions 4.5 of vertical equilibrium (one at each of the three nodes), and a
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geometric equation L.6 for each of the four remaining members with verti-
cal force components (numbers 13, 24, 34 and L5). The mmber of equations

(seven) is seen to be the correct number needed since nine unknowns remain,

and T, , of which only the
34 45

first five eppear in the objective function.

namely X., X, Z,, 2,5 2., T T T
12 %22 732 Ty U5 TZ) 57 77,0 7L

For the computer solution the unknowns were non-dimensionalized by
dividing all the variables (and equations) by L or P as appropriate, and
numbered X (i) where i varies from 1 through 9 in the same order as they
appear in the previous paragraph (ie X (4) = z, and X (1) = TZ“).

Two problems were encountered with the computer use of the program
due to the unusual character of the feasible region defined by the con-
straint equations, The character of the feasible space, presently to be
discussed, made it necessary to provide the computer an initial feasible
solution (one satisfying all the constraint equations), and eventually to
modify the constraint egquations.

The progrem is designed for a convex feasible space. A convex space
is one in which if a line connects two points belonging to the space,
then all points on the line must also belong to the same space. Each
constraint which is expressed in terms of an equalitly violates the con-
vexity requirement since it describdes a curve in two-dimensional space (if
it contains two variables), a surface in three-dimensional space (if it
contains three variables), and so on. The standard practice in the case
of such a constraint is to expand the space corresponding to that particu-
lar constraint by replacing it by two constraints, a negative and a posi-

tive one each with some slack. For example, the constraint,
g (x3) =0 (4.13)



would be replaced by
g (x;) + e >0 and, -g (x5) + ¢,> 0 (k.1k)
where e, and ¢, are small quentities. In effect the surface is given a

thickness of € + e—:z.

In this problem, however, all the constraints are equalities. Con-
sequently, the space is so restricted that the expansion made by replacing
ell constraints by two equations similar to equations 4.1k still rendered
the computer unable to generate its own ititial feasible solution from
which to begin the iterative search, and unable to generate a second
feasible solution once given an initial feasible solution (except in one
instance).

To surmount this difficulty, the feasible space was expanded by
simply replacing all equality constraints (all of them) similar to equa-
tion 4.13 by

g (x5) > O. (4.15)
Since the optimun is expected to lie on the boundary of the feasible space,
and since the equalities condition of equations 4.15 will then hold, it
was expected that the optimum for the expanded feasible space would be the
same as for the original more restricted space. That all equalities be
satisfied in the final solution could be verified by making sure that the
values of all the constraint equations (which are part of the standard
output of the program) be suitably close to zero.

The expansion of the feasible space could also have been used to
advantage in computing the initial feasible solution since the modified

constraint equations L4.1l4 could be readily satisfied. In fact, it may be
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.better to do so in other cases since a solution satisfying the egualities .
within normel accuracies may be slightly outside of the feasible space due
to round-off errors, thus hanging-up the computer. In this case, however,
since a feasible solution could be readily obtained, and it was desired to
start the computer far from the optimum, it was decided to first generate
an initiael point satisfying the equalities. This was easily done by
cnoosing an arbitrary value for Pl, directly evaluating all the vertical
shears, T T T end T, ), and using geometry and the equations

Z13, Zau, 23y 45
of equilibrium to compute Xl, Xz’ z_, 2 and zs.

37 Th

From the classical solution it was known that at the optimum
P1 = 0O, Thus to be far from the origin an initial value of Pl = P
was assuwned. Then, to insure that the point was well within the feasible
region, zh was arbitrarily increased by adding 0.2 to it alone to make it
1.2, The initial feasible point could thus be depicted as point C in
Figs. 4.4, 4.5 and L.6. The initial feasible solution, the computer ob-
tained solution and the exact solution from the classical method are
shown in Teble k.1.

The accuracy of the numerical optimization solution (to six signifi-
cant figures in most cases) can be seen to be more than adequate for most
practical purposes. Greater accuracy could be obtained if required by
modifying tae convergence criteria used by the program to end the itera-
tions,

The values of the constraints for this final solution are all less
than 1 x 10  verifying thet all the equelities are satisfied. That the

solution found is a global minimum can thus be assured, and further
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Table L4.1l. Least volume square lattice

Computer Found

Initial Feasible Exact Analytical

Variable (P§Oi2t’P) Optimum® Optimum
X() = (X,/P) 1.0 0.32914088 0.32914029
X(2) = (X/P) 0.2 0.98742059 0.98742088
X(3) = (23/L) 0.3 0.30382146 0.30382181
X)) = (z/1) 0.5 0.30382195 0.30382181
X(5) = (2z5/L) 1.2° 0.40509601 0.10509575
X(6) = (Tzl3/P) 1.5 0.50000015 0. 50000000
X(7) = (Tzzh/P) 0.5 1.50000001 1.50000000
X(8) = (TZ3A/P) 1.0 Lok x 107 0.00000000
X(9) = (TZL /P) 0.5 0.50000009 0.50000000

]
- 8PL ! g
FX) = (V.. x ) 1.85 1.316561k 1.31656118

min™ £,

a . .
Tterations = 39. CPU Time = 6.6 sec.

Region Used = 152K,

I/0 Time = 13.8 sec.

b
Computed from analytical solution (equations L4.10, 4.31 &nd 4.12) by
taking square roots of ratios of whole numbers,

c
Increased by 0.2 from value of 1.0 which satisfies the equalities to in-
sure that point is well into the feasible region.

ClIncreased by 0.10 to correspond with increase of X(5).
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verified by noting that the value of the dual objective function at this
last point was 1.3165617 (in agreement with the primal objective function

to seven significant figures).

Network Domes

General

The optimizetion techniques developed in this thesis are particularly
useful in the optimization of dome like lattices. Some domes, for example
a Schwedler dome with two diagonals in every bay, are indeterminate even
after all joints are assumed to be pin-connected and thus require the use
of the shell anelogy method. The network dome, however, is a tType of
dome which is determinate, and stable if it has an odd number of sides
(Benjamin (3)). A typical network dome of five sides is shown in Fig.
1.,8. The dome illustrated has two levels above the supports and an open
top.

This section will synthnesize a least volume network dome optimized
for a vertical load of total magnitude W assumed to be evenly distributed
over the horizontal projection of the dome. The dome selected will have
nine sides and five levels above the supports including the peak center
point, as the dome will have a closed top. The dome will be optimized

using the nonlinear programming method.

Typical formulation

A partial plan view of the network dome to be optimized is shown in
Fig. 4.9 where the node numbering system to be used is indicated. The

nodes are evenly spaced from The center to the supports, so that the in-
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Fig. L4.8. Typical network dome.
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Fig. 4.9.

Partial plan view of dome to be optimized.
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cremental radial distance from a node in one level to the next is rO/S
where ro is the radius to the support points, O.

Because of symmetry, only one-ninth of the structure including one
node of each type need be considered.

The load applied at each node corresponds to the load on the horizon-
tal area bounded by two meridians drawn through the midpoints between that
node and the adjacent nodes on the same level, and by two ares drawn at

the midpoints between that node and nodes of adjacent levels. Thus,

Py o L 27 (ro/10)? - W (4.16)
2o r02 9 900
where P5 is the portion of the load at node 5 on the one-ninth portion

of the structure to be considered. It can be similarly shown that

N

P, = 8P,

P, = 16 P_,

3 S (4.17)
P, = 3 P,

P = 32P. )

The objective function to be optimized, using the theorem of zero absolute

potential energy is

1 H. =
v = n. -
min { fo zrl rl}m:t.'n
b
= 9.1 P
Vain = f;[XO ro * DB ozz)s 1=1,2,...5(k18)

min
where XO is the horizontal component of the reactions at nodes O, and z3
is the vertical height of node i measured from the level of the supports.

+t is convenient, for computer applications to convert equation L4.18

to @ nondimensional expression, This can be done by dividing throughout
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by factoring out the term Psro. Doing so, and meking use of expressions

4,16 and 4.17, the objective function, equation 4.18, becomes,

. = wro XO + 32 zl + 22+ ZZ + 16 23 + 8 Z,+ + zS
Vain = ot (GO + 322+ 242+ 36 w8y (1}

(L.19)
where it is only necessary to minimize the nondimensional expression in-
side the brackets.

Since the structure, when assumed to be pin-connected, is steble
(and determinate) it is expected that the problem will be of five degrees
of freedom. This is surmised since each z; can be independently varied
and the equilibrium constraints can still be satisfied. This will be
verified by consideration of the total number of variables and the total
number of equations available.

Prior to a consideration of the equations of equilibrium, it is use-
ful to write some general geometric expressions for the tangential, radial
and vertical components of lengths of the members, which may later on be
combined to yield direction cosines as needed. For this purpose, let L
represent length, subscripted by T, R and Z when the tangential, radial
and vertical components are meant. Each member will be labeled by the
numbers of the two nodes it Jjoins, and superscripts will be used to denote
the node at which the component is computed. Then, the total lengths
Lii and Li,j are,

L.. = Zr. sin 20°
i (4.20)

or, Li; = S :-'Rii )e + (LTii )¢,
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‘and, s s 1 2 . 2 L : > ‘
end, Ljj ‘/@Ria‘)- . (LTi,j)) ' <Zij) (k.21)

T 5 2 i 2 &
- + +

where the quantities in brackets are constant even though

0

H
£
!

i 3 i j
L and L, # L
Ry * TR Tij T Ty,

0, 1,2...% and j = 1,2...4,

Furthermore, for i

- o )
LT.. = ij cos 207,
Jd
i . o
Ly = r. sin 207, (h.22)
ij .
LT'j = r, sin 20°; J
ij J
while L = L. sin 20°, )
B33 JJ
i o
LRij = T; - rycos 20, (k.23)
J o
LRij = r; cos 20 - ra, J
L = 0,
233
and L = z, -2 L. oy
2y " % (1.2)
Member L5 is a speciel case for which
L = 0
Tus ’
Ly = (/5. (:.25)
45
and, L = z2_-2.

Zys
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In all these only L, involve variables (Zi)'
13
There are in general three equations of equilibrium to be satisfied
at each node. However, the equilibrium of forces in & tangential direc-
tion will be automatically satisfied by symmeiry at every node, as will
the equilibrium of forces in a radial direction at node 5. In addition,
the equilibrium of forces in a vertical direction at node O is not needed

since the vertical reaction needs not be computed and it does not appear

in any other equations.

Using T to denote the force in each bar (positive if compressive),
and letting the subscripts and superscripts have the same meanings as

above, the equations of equilibrium are then, 1) considering equilibrium

of vertical forces

at node 5, T, - E, = 0, )
45
at node L, 2T, - T, - P, =0, (4.26)
34 45
at node j, 2T, - 2T, - Pj = 0, j=1,2,3;
J-1,3 J,d+l

and, 2) considering equilibrium of forces in the radial direction.

N\

at node 4, 2 T - 2T - T = 0,
Rau Ru“ Rus
at node 3, TRf R N TR? =0, i7,2,3 L.27)
J-1,J Jd J,Jdtl
and, at nmode 0, 270 - X, = oO. J
01

In addition, it is necessary to insist that there be no bending in any

bar (or joint). Thus, the force components in the bars must be related

as follows:
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T i i
R I, Iy .

i = ij = Jla (4.28)
1l L L

Rij Zij Rij

Member 45 hes only one radial component whether computed at node U4 or 5.
Consequently equation 4.28 gives only one equation for member 45, For each
of the other inclined members, equation 4.28 gives rise to two equations
one pairing the first two terms and the other one pairing the last two

terms. Using equations 4.23, 4.24 and 4.25 in equations 4,28, and expand-

ing, one obtains

for member 45, (TR Yz - (TR )z - (Tz ) (ro/5) = 0, )
us 0 45 45
. 3 J . 0
iy emb a . - - - . - N =

or member 1] (Thij) 2, (TRij) zs (Tzij) (rl cos 20 rJ) 0,

and (T 2 ) 2 (T 3 ) z3 (T, ) (x r, cos 20°) = ©
’ Rij~ ™d Bij’ ™t 2337 L7 ’
J

where i = 0,1,...3 and j = 1,2,...4. (4.29)

Equations 4.26 (five equations), 4.27 (five equations), and 4.29
(nine equations) comprise the needed equations of equilibrium, a total of
nineteen equations. For computer applications, it is convenient to non-
dimensionalize them by dividing eguations 4.26 and k.27 by P, and dividing
equations 4.29 by P s Toe
A total number of 24 variables appear in the objective and constraint
equations. The number of degrees of freedom is then five (24-19), as

expected. For the numerical optimization process the variables will be

labeled as follows:
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X(1) through Xx(5) (z;/r,) through (z /r)

x(6) = (XQ/PS)

X(7) through X(10) = (TR /Ps) through (TR /Ps)
11 4y

X(11)through X(14) = (T;0 /B,) through (T;SQ/PS)
1

x(15) = (Tp, /%)

X(16 )through X(20) (TZOI/PS) through (Tzus/Ps)

]

and X(21)through X(24) (Tl /Ps) through (Tg /PS)
34

Ry

Least volume without considering tension ring

It is assumed that the supports can provide the necessary thrusts
and thus no tension ring is needed. When this is the case, equation
4,19 is the correc§ expression for the entire volume of the structure
(all in compression), and it is the objective function to be optimized
subject to the nineteen constraints of equilibrium, equations k.26, 4.27
and 4.29 (after nondimensionalization).

The program AUKLET, modified as already discussed, was agaln used.
The comments with respect to the difficulties due to the non-convexity
of the feasible region made in connection with the square lattice apply
here as well since all the constraints in this case are also equalities,
i.e.

g (xi) = 0. {(&#.30)

In this case, the feasible region was expanded by using the sub-

stitute constraint equations

g (x) +e 20, (4.31)
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where e , a smell quantity, was added to insure that round-off errors
would not lead the computer to reject as non-feasible the initial point
fed in.

The initial feasible solution was readily obtained by the following
steps: |
1. Obtain all vertical force components by consideration of the vertical
shears (equations L.26).

2. Arbitrarily select the heights between adjacent nodes (zj - zi) and
substitute these values, together with the shears of step 1, in equations
L.29 to find the radial force components of all inclined members working
from the top down.

3. Use the radial force components of step 2 in eguations 4.27 to find
the radial Torce components of the ring members.

L, If all variables are positive, then obtain 25 from the condition
that z0 = 0 working up from the supports.

The first guess resulted in some negative variables which could be made
positive by modifying only the pertinent zg - z; terms. A solution thus
obtained satisfies all the equalities. If all variables are positive,
then the solution is an acceptable initial feasible solution.

After the first run, it was found that for some constraints the
equalities were not being satisfied as evidenced by finite remaining
slack. This first solution was then an optimum for the modified con-
straints of equations L.31 and not for the true constraints of eguations

4,30. Several trials were then made successively forcing the computer

to satisfy the equalities by either adding a second constraint equation
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of the type

-g (x3) + e > O
or by adding this second equation and discarding the original constraint
of the type similar to equation 4.31.

Since the computer seemed to have difficulty in converging rapidly
(probably because the small differences between large numbers in con-
straints equations L4.29), it became necessary to use a better initial
feasible solution. Intuitively, it was expected, as noted before in
chapter three, that the optimum solution might be found when the dome
would become a member of & more efficient class. In this case that would
occur when the ordinates z; are so related that the forces in the ring
members are zero. The ring members vanish, and the remaining lamella-
like dome would be in unstable equilibrium with the applied loads.

The proportions which the ordinates, z;, must maintain for zero
ring force are obtainable from the equations of equilibrium (equations
L.26, L.27 and 4.29). Using them in } Fi.ri (equation 4.19) reduces
the latter to an expression in only one unknown and amenable to direct
mathematical optimization. Thus, the assumption that the ring members
would venish reduces this problem to one degree of freedom and allows
the classical method to be used.

Nevertheless, since such a solution depends on the validity of the
assumption, it was decided to use the assumption only to provide & better
starting point for the computer, but to allow the computer to solve the
five-degree-of-freedom optimization problem and verify the assumption.

With the new starting point the computer converged upon a solution
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in which all constraints had slacks of less than 6.8l x 1073 and in which
all the ring members had essentially zero forces. A partial list of the
initial and final values of the variables appears in Table L4.2. The close
agreement of the computer solution with the expected solution supports the
assumption that the ring members would vanish at the optimum. The com-
puter solution appears to have lesser volume than the expected optimum.
However, it is felt that the difference is due to the small € that were
added to the constraint equations, and which expanded the feasible region
to include a surface slightly below the surface describing the real feasi-
ble space.

A schematic drawing of the dome is shown in Fig. 4.10, and & half
cross-section of the surface on which the nodes lie is shown in Fig. L4.11.

In an actual dome, to resist secondary loads, either the Jjoints must

be fixed, or ring members must be provided.

The nonlinear programming method of optimization would be useful if
it is desired to insist upon the existence of the ring members. In that
case, a solution could be cobtained by adding constraints of the type

Ty - % 20
where Ki is any desired constant, with the dimensions of force, specified
for the given ring member. The Ky values should be selected giving con-

sideration to the known lengths of these members thus keeping their respec-

tive slenderness ratios above the value of incipient buckling.

least volume considering tension ring

If the supports are not able to provide the necessary horizontal com-

ponents of the thrusts, a tension ring would probably be required.



Table 4.2, Least volume network dome without tension ring

Initial Feasible Computer Found Expected Opti-
Variable Point® Optimum muam®
X(1) = (2/ry) 0.k 0.36181012 0.3617431L
X(2) = (z5/ry) 0.8091 0.73173258 0.73173243
X@(3) = (23/r0) 1.117 1.0103%16 1.0105236
X(L) = (z/ry) 1.261 1.1401758 1.1kokl72
X(5) = (25/ro) 1.279 1.1566119 1.1568632
X{(6) = (X /ab\ 50.27 55.572985 55.586177
F(X) = (V. .
( )d (Vpsn loofc) 111,74 111.15597 111.17235
G(x) 111.15913
X(7) = TR /P 0.0 0.0001290 0.0
= . . 0.0
X(8) R22/P ) 0.0 0.0001858
X(9) = R33/ 0.0 0.0004165 0.0
= 0.002 . .
X(10) (¢M/P5 0.0032194 0.0

®Based on expected solution .

Piterations = 72. CPU Time = L46.9 sec. I/0 Time =93.8 sec.
Region Used = 162K.

CComputed by the classical method together with the expectation that the
ring members will venish at the optimum.

“Value of the dual objective function.
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Fig. 4.10. Schematic drawing of optimum network dome.
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Fig. 4.11. Half cross-section of surface on which the nodes lie.
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The volume of the ring may be taken into consideration, as suggested
in chapter three, if it is desired to minimize the total volume of the
structure including the volume of the dome (totally in compression) and of
the ring (in tension).

The loads on the ring are the thrusts (Xo) at each node 0. Conse-
quently, applying the theorem of zero absolute potential energy to the

ring alone, its volume Vﬁ may be written as,

- L = =
vy = & D F .5
or Ve = %— f XoTo i (4.32)

where the use of ft implies that the ring will be designed to be uniform-

ly stressed to f., the aliowable tensile stress for the materlal of the

.‘-t,
ring.
The total volume of the structure, VT’ is

vV =V _ + V
T D R

where Vb is the volume of the dome exclusive of the ring and is given by

equation 4.18. Thus, using equations L.18 and L.32, the total volume of

the structure is

= 9 9
v = Z + P + £
. z l Xy %, ) izi! 7 l Xy T, |
Assuming that fc = f%, this last equation can be written as
= 2 +
Vo 72 (@xz ) P.2.) (4.33)

Equation 4,33 is the objective function to be minimized for minimum vol-
ume of the entire structure. It differs from the objective function used

earlier (not considering the ring) only in that the Xorb term is now
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counted twice.

The dome with the tension ring will be different from the one Jjust
optimized orly in that the ordinates will be increased to reduce the hori-
zontal components of the ‘thrusts due to the double weighing of such hori-
zontal forces in the optimization function. Consegquently, the dome with
the tension ring is also expected to be of least volume when the compres-
sion ring members in the lattice disappear.

Teble 4.3 shows the results obtained when using the classical method

and the computer assisted nonlinear programming method.

Lamella domes

The framing geometry of a network dome is similar to that of a
lamella dome with norizontel rings. Such a2 lamella dome is In reality a
many sided network dome. Thus, the same formulation used above would be
applicable to a lamella dome.

Lamella domes are reported by Maekowski (18) to be very efficient
structures for spans of up to 1,200 feet, or possibly even more, and which
can easily support, mainly by axial forces, any large concentrated loads
that they may be subjected to. Loads imposed on the domes are rapidly
dispersed throughout their framework and this, according to Makowski,

"leads to considereble saving of material."

Parabvoloidal Lattice

General

In this example, a parapoloidal dome, with a statically indeter-

minate lattice geometry, will be optimized by the shell analogy method.



116

Table 4.3. Least volume network dome with tension ring

i Initial Feasible Computer Found Expected Opti-
Variable Point?® Opt imumP mum®
X(1) = (2 /z,) 0.4 0.51170981 0.51158205
X(2) = (zalrb) 0.8091 1.0348285 1.0348259
X(3) = (23/rb) 1.117 1.4288139 1.4290962
X(L) = (z),/x4) 1.261 1.6124373 1.6128359
X(5) = (zS/rb) 1.279 1.6357160 1.6360516
X(6) = (XO/PB) 50.27 39.293727 39.305363
Wr d
F(X) = (Vg3 0_) 111.7h4 157.19k29 157.221k45
1007
G(x)¢ 157.202k4
X(7) = (Tg,, /P5) 0.0 0.0001699 0.0
X(8) = (TRzz/PS) 0.0 0.0002L45 0.0
(9) =
x{9) (TR33/P5) 0.0 0.0005482 0.0
= (T P . .
X(10)= ( th{ 5) 0.002 0.0042325 0.0

@Based on expected solution.

PIterations = 137. CPU Time = 88.5 sec. 1I/0 Time = 177.0 sec.
Region Used = 162K. Largest slack in the constraints = 6.76 x 1073 .

CComputed by the classical method together with the expectation that the
ring members will vanish at the optimum.

dIf the tension ring is present but not considered, the corresponding value
for the total volume of ring and lattice would be 166.75853.

€Value of the dual objective function.
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The dome chosen for the example is shown in Fig. 4.J2. It has the
geometry of a Schwedler dome with two sets of diagonals. However, in a
Schwedler dome the diagonals are tension diagonals designed to buckle and
be inactive under compressive stresses (Benjamin (3)). Here both diagonals
will be designed to carry compressive stresses to achieve a homogeneous
state of stress in the dome. This mey not be practical in a real life
design but is done here only to demonstrate the shell analogy method, and
to further show that a hyperstatic and a static structure have the same
least volume when optimized for the same system of loads.

The dome will be optimized with respect to a total load, W, distrib-
uted on the horizontal projection. Since it is to be optimized by the
shell analogy, the load allocated to each node will not be computed but
instead the same distributed load will be assumed to act on the analogous
shell thus satisfying correspondence of loads.

It is to be noted that, under symmetrical loads the diagonals of the
structure to be optimized carry no stress (Benjamin (3)). Thus, as the
dome is to be optimized for symmetrical loads (uniformly distributed on
the horizontal projection), the proper procedure for an absolute minimum
would be to remove the diagonals and optimize the resulting fixed-jointed
Schwedler dome. Intuitively, it may be expected, as was the case with
the network dome, that the global optimum would then occur when the ring
members all vanish leaving only the free-standing ribs joined at the crown
of the dome. TFor the purposes of this example, however, the diagonal and
ring members will not be allowed to vanish, and the nodes of the structure

will be assumed to lie on a paraboloidal surface. The optimum to be
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found will then be optimum among all similar domes.

Formulation and solution by shell analogy

Since the shape of the dome is assumed to be paraboloidal, the analo-
gous shell will have to be a paraboloidal shell, thus satisfying the geo-
metrical requirements for analogy.

The relationships between the dome bar forces and the shell tractions
are not needed initially since the shape of the lattice and of the shell
have been already selected to be paraboloidal. These relationships will
be eventually needed to verify that it is possible for the lattice to be
homogeneously stressed while satisfying the required var force-shell
traction relationships. The relationships will nevertheless be developed
now using thke analogous portions of the lattice and shell shown in Fig.
4,13. The portion of the lattice corresponds to the shaded portion in Fig.
L.12. In Fig. 4.13 the loads on shell and lattice are omitted for clarity.
The shell must be analogous to the lattice in a geometrical sense and with
respect to all force resultants. Geometrical analogy is satisfied by the
assumption of paraboloidal shape for both, and by insisting that a, b1 and
b2 are the same lengths in both portions which are similarly situated on
the respective structure. Force analogy must be achieved for the loads on
both portions and for the resultants of the bar forces and of the shell
tractions.

For lozd analogy the load on the node of the lattice must equal the
total load which is assumed evenly distributed (on the horizontal projec-
tion) and acting over the surface of the shell.

For lattice force and shell traction analogy the reswltants in the
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Fig. 4.13. Analogous portions of lattice and shell.
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meridian (¢) and ring (8) directions of both must be equal. Mathematical-

1y,
T + 2 Ty cos = N b )
by 4 %4 b ¥’
T + 2 T3 cos 05 = N, b L,34L
rb2 d2 d, ¢2 22 (L.3%)
and Trg + le sin o, + sz sin adz = Ng &, |

where the subscripts rb, d and rg refer to the meridional ribs, the
diagonal and the ring members, and the subscripts 1 and 2 are used to de-
note the members or forces above and below the center of the portions
respectively.

Satisfaction of equations L4.3hk with a homogeneously stressed lattice
implies that both 1\74> and Ng must be compressive in the final shell. No
other requirements arise and the N¢/Ne ratio may vary in any fashion
throughout the shell. ‘

Consider now the analogous paraboloidal shell. The shell is shown
in Fig. 4.14. Since the load is axially symmetric, for convenience, a
circular cylindrical coordinate system will be used with the origin at
the zenith of the shell as shown in the same figure.

The equation of the shell is

z = z (rz/rbz) and dzfdr = 2 zb(r/rbz) (.35)

where r, is the radius of the shell at the supports (a given constant),
and 2y is the height of the shell, constant for any one shell, but in
reality the variable with respect to which } ii.‘i-i will be minimized.

The load intensity (p) on the shell, per horizontal unit area, is

p = -4 (4.36)

)
™y
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Fig., 4.14. Anslogous parsboloidal shell.
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where W is the total load. Consideration of the vertical equilibrium of a
free body diagram of the portion of the shell above a cutting plane at an

arbitrary radius, r, yields

N = _—lz:——__ . (h.37
¢ 2 ry2sin ¢ )

The radii of curvature, Ry and Rg for the shell are

R. = I )
8 sin ¢

(1 + (azfan?pd/2

and Ry = = (4.38)
ar?
2
or R = ———;———rb
¢ 2zb cos>¢ : )
Considering the equilibrium of & small section of the shell,
Yoo Yo - 2 (4.39)

where Z is the intensity of the load orthogonal to the middle plane of
the shell, considered positive when inwardly directed (since here N ) and
Ne are positive when compressive). In this case,

Z = p cos2e. (1.10)

Using equations 4.38 and 4.40 in equation 4.39, N, can be expressed as

N = W cos ¢
o = Thmy (b.41)

Note that N é and Ng are both compressive and neither changes sign for
any paraboloidal shell (since ¢<7/2 always). Were l\Ie to become tensile
at some point, then, after Zf‘i.i'i is minimized, it would be necessary to
insist that ¢b at the supports be limited to be no larger than the

which causes Ny = O or else a homogeneously stressed structure would



12k

not be possible.

For the shell, L Fi.i'i mey be expressed as

I F,.E

;= Z)Corb + ZPi(zb-z.)

1

Ty
- _ : W
= 2 s — -
ZFi.ri N, (cos ¢b) am rb f 77 (zp -~ z) 2 rdr

0
where the subscript b refers to the variables evaluated at the support.

Using equations 4.35 and 4,37 this reduces to

r
Wrp . Wz r‘z »3
2 Y - .-'—.) dl‘.
tan ¢ z‘bz r. 2
b 0 b
Noting that tan ¢ = dz/dr, evaluating the latter (equation L.35) at

Y F.p =

= I and evaluating the definite integral,
2

- W [T .

- & B+ z}. (k.h2)

r
F
: b

e D,
1°71
Letting the derivative ofz f‘i.f'i with respect o 2y equal to zero, it
can be shown that for minimum ) fi.:?i,

Zb = rb. ()"Lc)'l‘S)

The shape of the resulting shell is as shown in Fig. 4.1k which was

purposely drawn with z. = r .
b o)

At the supports, from equation L4.35

tan ¢, = 2
b
1
and consequently, cos ¢b =75
sin¢, = Z.
n b - /’5‘- .



125 - 126

‘Therefore, from equations 4.37 and 4.141,

L L ry,

b (b.hk)
and Ne' = K—L—

b /5 ™,
Applying equations L.3l4 at the supports,

/5%
T + 2T, cos ¢ = kb
rbl d1 d1 4 'n'rb 1
; (4.45)
and T: sin o = o &
s dl dl ’-l-/; Wrb 5 J

where the notation is as used in equation 4.34k. The last of equations
L.45 results from the last of equations 4.3k where Tpy, = Ty, = O, and
a has been adjusted to be consistent. Equations 4.45 imply that the

nodes are very close to each other and thus N¢1 = N¢b‘ Assuming further

that @ = 45° and thus
1
sin ag, = cos aq, = 1//2,
while af2 = b /2 ,

results in the following values

J
1
Lv10 LER
and (4.46)
T a W bl
rby - T —
L B

Equations 4.46 show that it is possible to have correspondence of forces
and shell tractions without violating the requirement that all members

of the lattice be homogeneously stressed (all in compression). Equations
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i&.hé or their equivalents could be written for all members. If all the
members are then proportioned (by selection of their areas) to be stressed
to fc, then the resulting design would be & least volume design for the
class chosen (nodes lying on a paraboloidal surface). Furthermore, this
would be a statically indeterminate structure of least weight in its
class.

This is, however, only & solution and not & unique solution. Other
solutions are possible of equal (but no lesser) volume, This will now be
demonstrated.

Equations 4.45 were written assuming that there would be no compres-
sive ring at the support level. There is no mathematical reason to pre-
clude the use of such a ring (even though it may not be practical). Re-

writing equations U4.45 with such a ring provided,
s W 1

+ = P )

Trbl 2Td, cos Gd H;E;b—- 1

W a

g d 4 b5 w2 J

(b.47)

H
+4
1
ml
B
R
[

and,

Equations 4.47 can be satisfied (thus insuring that the analogy holds)
with any arbitrarily selected value for Td provided it is less than the
1

value given by equation k.46 (if it is greater then Trg would have to be

negative and thus a tensile force). Assuming, for example, that g £ O
1

yields the solution
Y5 W,

Trbl = n
W (4.48)
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Similar equations can be writiten at every node always assuming that the

diagonals vanish.

The solution indicated by the typical equation 4.48 would have the
form of a Schwedler dome without diagonals and would be a statically deter-
minate solution. Since it satisfies the correspondence of forces with the
shell, the shell analogy solution applies. The removal of the diagonals
with the corresponding increases in the volumes of the ribs and ring
members does not alter z fi’fi nor disturb equilibrium. Thus, if the ribs
and rings of this second solution are also designed to be fully stressed,
the volume of this second structure is also a minimum (of the same magni-
tude of that of the first structure).

Consequently, this is & demonstration that statically determinate and
statically indeterminate structures, when optimized are fully stressed,

and that when supporting the same loads, their least volumes are identical.

Paraboloidal Shell
In this example the geometry (height-to-span ratio) of a paraboloidal
shell will be optimized for least volume of the shell, with and without

the consideration of a tension ring.

Least volume without tension ring

From the previous example the following equations, applicable to the

shell, are repeated for convenience,

z =z, (r2/rb2), dz/dr = 2 2y (r/rbz), (4+.49)
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N =
¢ 27 rbz sin ¢’
(4.50)
N = W cos ¢
J 24-'trzb
- 2
7 = ¥ . L.51
and, [ F,.T. 2{;—2— + oz} (4.51)

It can be shown that N ¢ > Ne for all ¢, the equality holding when

¢= O (zenith of the shell). Consequently, this shell belongs to level

I in the hierarchy of structures (i.e. I\Td, can be such that o 6o - fc but

o)
)

mum for the given load (of total value W, distributed over the horizontal

fc and is compressive everywhere). Thus, to obtain a global mini-

projection) it would be necessary to first change the shape of the shell
to make og = fc everywhere, then minimize Zf‘i.i‘i , and finally check
that Zfi.i'i hes not been unduly increased in foreing 0y = f_ (moving
from level I to level III in the hierarchy of structures).

Interjection of the requirement that ¢ 6 = Og = fc would require a
change in shape and lead to differential equations that can only be
integrated (to obtain the equation for z) numerically. The optimization
would not yield a closed form solution.

Therefore, to avoid that complication, the example, as its title

implies, will only seek to obtain a paraboloidal shell of minimum volume

(among all paraboloidal shells).
The volume of the shell, using the theorem of zero absolute potential

energy, can be expressed as

1 = = 1 (Ng
V = &) F..P; - = [~~~ av 4,52
cz i*=i £, ftr ( )
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where the use of fc implies that the thickness of the shell, tr,'will be

so selected that 0¢ = fc’ that is
t = __Q . ()+'53)

Using the first of equations k.50,

t, = Hr (k.5h)

r 2 -
2 fcﬁrb sin ¢

To obtain the least volume it is necessary to minimize the entire

right hand side of equation L.52.

Equation 4.52 can be rewritten, by meking use of equations 4.50,4,51

end L.5L4 as
2 r 2.
v = M T +z}_ljwc°s¢ 2 fem rp Sin byay,
2f, zp b Te) bz, Wr
Simplifying,
2 r 2 ;
R N N lcose)sin Sqv (4.55)
2f, 2y b 2 Z, T

Since the shell is axially symmetrical, dV may be replaced by its equiva-
lent expression, 27rt,. di where di is the differential element of length

along the meridian, and noting that

dy = ar 5
cos ¢
equation 4.55 becomes
7y
W r}F 2 ﬂzif sin ¢
V = e -— t Z }- e, (tr)dl‘: (h‘-56)
2r ' %p o | 2z,
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where the appropriate limits of integration have been added.

Using equation 4.5L to replace t.in equation 4.56, and simplifying,

2 ™o
T
QS R i NP g & fr_dr, (5.57)
2f, = 2zp 2f, Zp
0
Evaluating the integral and collecting terms,
2
W Ty
V = — n— + )'l‘. 8
57, { 5o z, } (4.58)
Letting aV/ sz = O for minimum volume,
r.
b
Z, = —_ . (h'sg)
o /2

Expression 4.59 is the solution desired. The shape of the resulting shell

is shown in Fig. 4.15. Its volume is
W
v = —2/3 (4.60)

Consideraticn of tension ring

To optimize the total volume of the shell with a tension ring, it
suffices, as discussed in chapter three, to double the term inz Fi.ii

that reflects the contribution to it of the horizontal forces along the
periphery of the shell.

Doing so, equation 4.57 yields

22 2
Vs gt =2 4oz - Sy,
2y 2f 2zb
or,
2
V:.W_{‘?’_{b;+z}_ (’-#.61)



132

Fig. 4.15. Optimum parsboloidal shell without tension ring.
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Agein letting 3V/ 3z, = O for minimm volume,

z, = rb/g_ or, z, = 1.225 1.

The resulting shell is shown in Fig., 4.16.

The volume of the shell-ring structure is

¥*
= ¥Ib k,
Vs+R 2fc/6- > (4.62)

where the ¥ indicates a minimum volume and the subscript S+R implies
minimization of the entire shell-ring structure. If only the shell had
been minimized (either ignoring the ring or meking the assumption that the
supports could absorb the horizontal thrusts) the volume, with similar

notation can be expressed as (equation 4.60)

* Wrb
VS = é-fz > . (4.63)

If a ring was present but ignored, the volume of the ring alone can be

computed from its own ) f‘i.i'i as

which, since z, = rb/ V2 (equation 4.59), becomes

_ Wy
V= = 2 (L.64)

The total volume of the structure with a ring but where only the shell was

optimized is,

o
Ber =% T Vg
or, adding equations L4.63 and L.6L4
= g (4.65)

S+R  2f, .



Fig. 4.16. Optimum paraboloidal shell with tension ring.
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Comparing equations L4.65 and L.62 shows that by considering the ring
in the optimizetion process the volume was reduced by 13.4% from the
volume of the shell which was optimized while ignoring the tension ring.

At the same time, the rise was increased from

z, = rb/ V2 (optimization on shell only)
%o 2z, = rb»’372 (optimization on shell-ring)

representing a 22.5% increase.
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CHAPTER FIVE - SEQUENCE OF ALTERNATIVE DESIGNS
FOR SINGLE SYSTEM OF LOADS

General

The purpose of this chapter is to explore the chenges in least
volume which occur, when supporting the same loads, as a transition is
made from a structure of one hierarchical level to one of another level
(see chapter two).

To do so, three different latticed structures and their correspond-

ing analogous shells are optimized. Their volumes are thenrn compared.
Load System

Assume that it is required to synthesize a structure to support a
ring of vertical loads. The supports are also to be disposed in a circu-
lar plan and can absorb the thrusts required. It is permissible to raise
the ring load at any desired height above the supports. Such a load sys-

tem is shown in Fig. S5.1.
First Lattice Alternative - Conoidal

For the first alternative structural system, consider the structure
whose cross-section is éhown, schematically, in Fig. 5.2. It will be
optimized by the classical method first.

In Fig. 5.2, the total load, W, is divided into 2n loads of magnitude
P acting at the top nodes. There are n "frames", similar to the one shown,
and arranged at an angle of 360°/2n from each other. Lines 1-1 and 2-2

indicate a radial force applied at points 1 and 2 and do not necessarily
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Fig. 5.2. Schemetic drawing of first alternstive.
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imply a memter directly joining opposite points 1 and 2. In the actual
structure, these radial forces céuld be provided by either compression
rings or by members directly joining opposite nodes.

The position of point 1 could be restricted if desired. Such res-

riction, however, would lead to the synthesis of a structure of least

ct

volume within that class (i.e. with restricted position of point 1). To

allow as much latitude as possible, the position of point 1 will be con-
sidered as free to vary.

It can be shown (from a consideration of the number of variables
and of the egquations of equilibrium, as discussed in chapter three) that
the optimizetion of the structure of Fig. 5.2 is a problem with three
degrees of freedom. Conseguently, all the constraints of eguilibriur

must be used to express z Fi.?i in terms of only three variables prior
to optimization.
For convenience, the following relationships are written,

\

ten ¢ = z /x_
11
tan ¢1 = 22/x2 . ( )
5.1
Xy T Xy = Ty -T,
’ 2z, +z,= z J
P
a.nd, XO = tan 0 H (5-2)

where all the variables are defined in Fig. 5.2.
Using the theorem of zero absolute potential energy, and the concept
of variation of Z Fi.ii, the objective function for the problem at hand

can be written as,
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(5.3)

Classical method

Using the equations of equilibrium,as indicated sbove, and selecting
xl, ® and ¢]e.s the variables to be retained, the objective function can

be written &s,

e T
Vigr = o = s P Xpram @ 4 (ry - 14 - x;) ten ¢1]lmin(5~l‘)

It is rot necessary to consider any other constraints because the
assumption that the structure is homogeneously stressed renders the struc-
ture statically determinate (in unstable equilibrium with the given loads,
for computation purposes).

The three additional equations needed to obtain a unigue and optimum

solution are:

oV _. 3
_min 22‘ [ -r. csc?¢ + x. sec?6 ] = 0,
OQ a.c
ov_. . )
aémn = 22’9 L(rb -r, - xl) sec?-q>1 ] =0 , (5.5)
1 ‘e
oV . P
and B2 = 280 [ tan ¢ - ten ¢, ] = 0 . J
Oxl fc

The third of these equations can be satisfied oniy if
¢ = 9 >

- - - - - k4]
end the second implies, since sec‘\b1 # 0 , that

Xl = rb—ra.

Consequently, from eguation 5.1, x, = o .
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These results are.consistent with each other and hence can be sat-
isfied simultaneously. They imply that for least volume, member 0-1~2
is straight and the force represented by line 1-1 vanishes. Furthermore,
the significance of the location of point 1 vanishes and point 1 can be
considered to coincide with point 2.
ter thus satisfying the last two of equations 5.5, it is necessary,
for & global minimum, to setisfy the first.

It can be verified that the first of equations 5.5 cen be satisfied

if
tan ¢ = V¥ rb7x1
or tan ¢ = ¥ rb/(rb-ra) (5.6)

which can also be expressed &s

1
ten ¢ = (5.7)
vy 1- (rg/re)
Then, using the first of equations 5.1, since z = z; ,
VA = /(I"D - ra)rb s (5'8)
- 2 4 ey
or, z = ra/(r§7f;7 - \rb/‘a) s (5.9)

and, using equation 5.k,

= _W 7 - - + . - r )r. ]
Vmin ET'L rb/(:é ra)/rb Ty ~ Tg/Tp & 2
c

where 2nP has been replaced by its equivelent, W. The latter expression

reduces to

V. = %E.VZrb - ra5rb s (5.10)
fe

or, ALY C R LER VI (5.12)
c

Zquation 5.11 can also be expressed as
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Wrg . Tp/Te
Vpin = -f—c—-{ e s T 2/ra s : (5.12)

with the sppropriate values used for ¢ and z. All these eguivalent
expressions for Vmin represent the total volume of all the inclined legs
and the top compression ring, and can be verified by actual computation of
the volumes of individueal members when stiressed o fc. The resulting

structure 1s shown in Fig. 5.3.

in a sufficiently general form resulted in

bl

Thus, expressing ) F;.7
a transformetion from the class of structures schematically shown in Fig.

to the more efficient class and global optimum of Fig. 5.3, wherein

\V]

5.

the legs of the tower lie on the surface of a frustrum of a circular cone

with bases of radius Ty and T,s and heignt z.

Shell analogy

The shell anelogous to the structure of Fig. 5.2 would be one com~
posed of two frustrums of cones with stiffening compressive rings at
levels 2y, where the two frustrums meet, and at z,, the top of the top
frustrum. Tror simplicity, only the shell analogous to the resulting struc-
ture of Fig. 5.3 will be considered. Shown in Fig. 5.4, such a shell con-
sists of one frustirum of a cone, geometrically similar to the lattice, and
with a stiffening compressive ring at the top level.

Note that for load correspondence dbetween the lattice and the shell,

the shell load, as shown in Fig. 5.4, is a circular line load of magnitude

PS which is
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Fig. 5.3. Resulting structure, a global minimum.

Fig. 5.4. Analogous shell in form of truncated cone.
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Referring to Fig. 5.5, correspondence between the shell tractions
and the bar forces of the lattice dictates that, if TL is the force in

one of the inclined legs, then

T, = N¢ r(w/n) .

where N¢ is the shell traction in the meridian direction, a function of
r so that TL remains constant. Since the lattice has no ring members
(except at the top),

N, = 0 (5.13)

on the shell, and TR = FR

where TR is the force in the ring members of the lattice, and FR is the

force in the compressive ring of the shell.

Referring to Fig. 5.k,

yFiF = Nglomm))r + Wz (5.14)

where Nﬁ is the horizontal component of NQ, the shell tractions in the
meridien direction at the supports.

It is now necessary o use the equations of equilibrium of the shell
to reduce the independent verisbles in equation 5.1L4 to one. 1In this

case, z will be retained.
Ny

From geometry, Ny = Ten o
where Ny 1s the vertical component of Ny, and
tan ¢ = Z/(r'o "'ra) >

while, from equilibrium of verticel forces,

W
2ﬂrb y

Ny =
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Hj
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a. Shell element. b. Lattice element.

Fig. 5.5. Analogous elements of shell and lattice.
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Using these last three equations in equation 5.14,

z Ei.;‘i =W { (z‘b ; ralrb +2 } . (5-15)
Letting 3{} F..T.} .
3z
for minimum ) Ei'Ei’ z = (rb - Ty (5.16)

which, by comparison, is seen to be identical with egquation 5.8 for the
lattice.

Continuing with the analogous shell, the volume of the lattice, Vi,

b
()

1 > =
V. = —= F..r. R (5.17)
min fc { z i rl } in

and, using equation 5.16 into 5.15, eguation 5.17 becomes

V. = 2W /(nb -r)r (5.18)

Lmin fc a b ?
which is seez to be identicel to eguation 5.10.
Thus, using an aneslogous shell, the form of the lattice structure for

ainimum lattice volume was Tound by minimization of Z Fi.Fi for the shell.

Correspondence of bar forces and shell traction resultants

In this case,'since a solution for the lattice wes already available
to compare with the shell analogy solution, it is obvious at this point
that the analogous shell yields the correct solution. In the more general
case, it would be necessary o0 coniirm that the conditions for the bar
Torces and shell traction correspondence are satisfied. The conditions

in this case are that N¢ be an inverse function of r so that TL be con-
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stant, and that Ne = 0. To demonstrate that these conditions are

satisfied, the state of stress in the shell will be investigated.

Sunmming forces in the vertical direction when considering & portion

of the structure gbove any arbitrary r, yields

err(Nysin ¢) = W , (5.19)
~ _ W
er m¢ T ornr sin ol ' (5.20)

Note that, as expected, N¢ is inversely proportional to r. Since ¢ 1is

constant ( 0o = & ), TL will be constant.

Letting tr be the thickness of the shell (& function of r),

W
t
r

s (5.21)

¢ 2 sin ¢
Considering a small element of the shell as in Fig. 5.6, and

summing forces in a direction perpendicular to the shell, yields

o, = 0 . (5.22)
This result could also be obtained by use of the similarly derived

expression (Timoshenko and WoinowskyeKrieger (38)),
N¢/R¢ + N /Ry = 2, (5.23)

where R¢ and Re are radii of curvature of the shell, and Z is the inten-
sity of the load per unit aree in a direction perpendicular to the middle
plane of the shell. In this case, R¢ =wand Z=0.

Now consider the stiffening ring at the top of the shell. The re-

quirement for the ring can be recognized by referring to the free-body
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N¢

Fig. 5.6. Small element of the shell.

Fig. 5.7. Free-body diegram of structural element.
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diagram of the structural element shown in Fig. 5.7. In that diagram the
forces are shown in the actual directions in which they act and not in ac-
cordance with any sign convention.

For eqpilibrium, the radial component of FR (the force in the ring)
must equel the horizontal component of N¢ . (In Fig. 5.6, Ng is not

shown since, as derived above, it is everywhere equal to zero).

Summing forces in the radial direction,

2 FR sin gg- = (N¢ cos ¢) r 46

or, since d6 can be taken as small as desired,
Fp = (N¢ cos ¢)r . (5.24%)

Using expression 5.20 in equation 5.24, and noting that =9,

- W
Fr = 27 tan ¢ (5.25)

or, expressing tan ¢ in terms of Tgs Ty and z,

_ W(r, = rg)
R = T ome (5.26)

F
To complete the demonstration of the correspondence of bar forces
and shell traction resultants, it now needs to be shown that TR’ the

lattice ring member force, is equal to FR. To compute TR’ refer to the

lattice element shown in Fig. 5.5. Summing forces in the radial direction,

2 TR sin (g;) = T cos & , (5.27)
. T _ Weos & _ W
ors, 2 Tg sin (2n) " ©on sin ¢ 2n tan & ° (5.28)

and, upon expressing tan ¢ in terms of Tgs Ty and 2z,



2 Ty sin (3) = . (5.29)

If w/(2n) is small (i.e. n is large), equation 5.29 reduces to

Wiry, = rg)
R = orz ’ (5.30)

which, by comparison with equation 5.26, demonstrates that TR = FR‘
Thus, the lsttice and the shell differ in that the shell is loaded by
a linearly distributed load, while the lattice is loaded discontinuously
at 2n points. The larger 2n is, the closer the shell and lattice approx-
imate one another.

Compatibility of deformations for this system of loads need not be
considered in the shell analogy since the geometry of both the lattice
and the shell are described in their respective deformed states (at which
time they are defined to be geometirically similar). Compatibility of
deformations would have to be considered in the analogy, if it were
desired to use tne analogy to determine the stresses due to other loads,
or due to the removal of the design load system. (For example, if the
residual stresses due to the removal of the loads on the lattice were to be
determined by analysis of the residual stresses on the shell-ring struct-
ture.) In such a case, additional requirements on the correspondence of
the shell-ring and lattice materizl properties would have to be introduced.

For examples of such requiremenis see Benjamin (3) or Parikhn and Norris

(26).
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Applicability of theorem to the shell

The theorem of zero absolute potential energy, equation 2.10,

for this structure, can be written as,

é% avg + é’oe avg + 1{OR vy = I F..F (5.31)

where the subscripts S and R refer to the shell and the compressive

ring respectively, and other symbols are as previously defined.
Considering the result of equation 5.22 (oe = 0), it is obvious

that o, > o, and that for least volume within this class of struc-

¢ 6
tures, tr should be proportioned by use of equation 5.21 such that

c¢ = fc everywhere, Therefore, for use in equation 5.31,
N
O'¢ = _Q s
tr
C)'e = 0 .
F
and c = _R—

R A
where A_ is the cross—sectional area of the ring. With these substitu-

tions, equation 5.31 becomes,

Iez

Fp = _
rds Ij;—dVR = I} F.F . (5.32)

ct

S
Using equations 5.25 and 5.20,

f——_dewAR o x = [F.1, . (5.33)

/

W
§ 27r t_ sin ¢ S

The integration of the second term of the left hand side can be easily
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made, noting that all terms are constant and that,

[ avg = Agem . (5.34)
R

The integration of the first term can be carried out if dVS is expressed

in terms of r, tr and ¢. This can be done, referring to Fig. 5.8, by

noting thet,

fav, = [omrt_ aL
3 S 2 r >
and, dL cos
Tb 2nr t,
or, édeS = f‘mdr . (5.35)
Ta

Using equations 5.34 and 5.35 in equation 5.33, this latter one becomes

T Wr -

f o{ W dr } + a_ - Z F..7. .

pr (cos ¢)sin ¢ . tan ¢ itti

a
Integrating,
- - + = F..r. . .
(cos ¢)sin ¢ (cos ¢)sin o tan ¢ ) i°Ti (5.36)
But, from geometry, since ¢ = ¢,
tan ¢ = 2
Ty, = Ty
(ro - ra)z

end, (cos ¢)sin ¢ = .

{ - 2 4+ o2
{ry ra) z

Therefore, equation 5.36 can be rewritten as

= Z Fi'i:l .
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o

Fig. 5.8. Element of integration.
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Collecting terms and simplifying, this last expression becomes,

(r, - r)r, cal = 3 fi.i".

A (5.37)

w{ ~

which can be seen to be an identity by comparison with éq_ua.tion 5.15.

It is thus demonstrated that the theorem of zero absolute potential
energy (equation 2.10, or its equivalent, equation 5.31) holds. It is
noteworthy that the derivation of equation 5.37 did not assume any par-

ticular value for ¢ or UR and thus, the applicability of equation 2.10

is demonstrated regardless of whether or not tr and AR are designed so

that ¢, and °R are constant and equal to fc.

¢

Volume of analogous shell

It is possible to make c¢ and ORr constant and equal to fc by letting

AR = FR/fc ’ and tr = N(,)/)‘.‘c

where FR and N¢ can be expressed in terms of W by the use of equations

5.26 and 5.20, respectively. In such a case,

fcédvs + fcﬁdVR = ¥ Fi.fi s

and, since the total volume, V‘I" of the structure is,

Vo, = fav, + fav, ,
T 3 S R R
. - 1 =
it follows that, Vp = f—z Fi’ri .
c

Thus, it is apparent that, since the entire shell-ring structure is

uniaxially stressed to f,, the shape that minimizes Z F;.r; will also
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minimize the volume of the shell-ring. Furthermore, the volume of such a
shell-ring structure will be identical to that of the lattice. Consequent-

ly, for the shell, as for the lattice, if Vmin is to be achieved,

z = V(rb - ra)r.D ,
~ (5.38)
or, z = ra/(rb/ra) - (rb/ra) >

2W
and, Ve = B TR (5.39)

Wrg = Ib/ra

or Vmin = fc[ ten o

1 (5.%0)

z/r

a

with the proper values used for ¢ and z.

Shell with plate in lieu of compression ring

If the compression ring of the shelli-ring structure is replaced with
a biaxially stressed circular plate, then, according to the theorem of zero

absolute potential energy, if the subscript P is used to denote the plate,

and if VS+P is the total volume of the shell-plate structure,
= _1;_ F LT - _l
Vern i ¥ F..F, 7 {;GP av, . (5.41)

This last eguation indicates thet the total volume of the structure is

reduced by the second term of the right hand side when the plate is used,
or,

- 1
Vsep = Vger - 7 [op dp

since Z Fi.fi is not changed by the use of the plate.
To demonstrate this, let the plate also be designed so that op = fc,

in which case, the second term of the right hand side is simply the volume
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of the plate, or Voup = Vger - Vp >
and therefore, Vp = %’VR .

Thus, to demonstrate the applicability of equation 5.41, it is sufficient

to show that when ¢_ = o_, V_ = + .
R P P 2 R

If a ring and a plate are subjected to the same distributed compres-

sive load per unit length, NH’ then, for the ring,

VR = 27rra AR
vhere Ay = FR/GR s
and, since FR = NHra R
vy = 2mri (Ng/og) . (5.42)
For the plate, Vp = ﬂri(tP)
where tp = NH/GP R
and therefore, Vp = nrg (NH/UP) . (5.43)

Comparison of equations 5.42 and 5.43 shows that Vp = %'VR’ as expected,

when gy = Cp-

It is to be noted that minimization of } fi.’i alone would not
yield the shape for minimum volume of this sheli-plate structure. The
entire right hand side of equation 5.41 should be minimized for that pur-
pose. If tkis shell-plate structure had been chosen as the analogous

shell for the lattice, minimization of Z Fi.fi would still have given

the shape for minimum lattice volume.
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Second Lattice Alternative - Hyperboloidal

Geometry of the lattice

The globel minimum volume lattice for the system of loads of this
chapter is given by the conoidal lattice of the first alternative synthe-
sis. Such & structure, however, may not be acceptable because of the
long unsupported legs, and it may be desirable to explore another class
of structures.

A different class of structures is shown in Fig. 5.9, where only some
of the members are shown for clarity. The class depicted therein is one
with clockwise and counterclockwise inclined legs that meet in pairs at
the top and bottom levels, as well as at points in between. The strue-
tures can be characterized by ra, rb and z, as before, plus n and m,
where n is the number of nodes around the top level (or the number of
supports), and m is the number of spaces between the two nodes of a pair
of legs. If o is the angle subtended by radii drawn to adjacent nodes, and

B is the angle subtended by two radii drawn to the two nodes of a pair of

legs (see Fig. 5.9), then

@ = 20
n
« = &, (5.4k)
m
and g = &m
n

One linmitation of this class of structures is that, if an all com-
pression structure is sought, then,
Yy < w/2,
where y , as shown in Fig. 5.9, is the angle between the extension of the

radius through one of the top nodes and the horizontal projection of the
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b. Side view.

Fig. 5.9. Another class of latticed structures.
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legs which start at that node. (If vy > n/2 were allowed, the legs would

pass under the circle with r, &s the radius and the top ring would be in

tension).
From geometry, d = r, cos g/2 ,
or, da = T, cos% s
(5.45)
and ten ¢ = ——r
an - I'b - d L]

where d and ¢ are defired in Fig. 5.9.

Classical methed

Using the generalized expressions developed in chapter three (eque-

tions 3.7 through 3.10),

1 Z rp
Vpin = 7= 112 + ] Pz
min fc tan @ }min >
and, since from equilibrium of vertical forces, Z =P , while Z P = W,
w . rb(rb - d)
3 3 .= Vv = —_—
using equation 5.L5, min £y 2 2 }min .
o A Vmiy
For Vmin’ letting oy 2 =9 ’
= - !
2 (rb d)r.D . j s hs).
= M e )
and, Vmin = . ( Ty d)rb .

Note that Vp;, is a function of m and n by virtue of equation 5.45.
If this class is preferable, it would probably be because of the shorter
lengths of the portions of the legs between intersections. For the max-
imum number of intersections with a given n, m should be as large as

possible. The magnitude of m is restricted by the requirement that
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Y < /2 , as mentioned previously. If m and n are properly related (or

if n is very large), then y can be made equal to n/2. In that case,

cos B/2 = r /r. ,
a b
ol
r2
and a = 2 .
Ty
o 1 3
T.hen, for Vmin, tan ¢ = / 1 - (ra/rb)z N
z = Vrg - ;g s (5.47)
2W
and Vv = - - . J
min fe Ib ra
I
n terms of r, and rb/ra,
rb/ra )
tan ¢ = / (I‘ /I‘ )t 1 )
b =
= . 2
z ra/ﬁlrb/ra) 1, (5.48)
Wr r./r
_ a b "a
and Vmin - fc{tantb * z/ra I

Shell analogy

The general egquation for the hyperboloidal shell of Fig 5.10 is,

if a #b , the surface is a elliptical hyperboloid since for any constant

o

z, X and y describe an ellipse. If a =b = Ty s then the equation of the

hyperboioid of one sheet becomes,

o i
+
LIS
|
N
|
'_l
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Fig. 5.10. Hyperboloidal shell.
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When y = Tas this expression reduces to

o1
'
0 "JN"’

+ f—(x) .
a

This last expression is the equation of two straight lines, shown as

from which, z

AB and AB' in Fig. 5.10, with slopes of c/ra and -c/ra. Consequently,

the surface of Fig. 5.10, a circular hyperboloid of one sheet, can be
generated by rotating a straight generatrix around a circle with radius
T, at z = 0; the generatrix being tangent to the circle and inclined

at a slope of c/ra or -c/ra in the vertical plane in which it lies. This,
then, is the surface which would be occupied by all the inclined legs of
the hyperboloidal latticed structure as n + » . This hyperboloidal shell
is geometrically similar to the lattice and can be used as the analogous
shell to the hyperboloidal lattice.

In circular cylindrical coordinates, independent of 6, the equation

for the shell is

r2 22 _ 1 - |
Z-E L5
a .
or, z = cf(r/ra)2 -1 . (5.49)
r
Furthermorea, dz _ e( /ra) .
dr r r/ra -1 ‘

For load analogy, the shell is to be loaded with a ring load of PS’

per unit length, and acting down at z = 0, of such intensity that,

W
P =
S

21rra

That this shell satisfies the conditions for it to be analogous to

the lattice can be verified by comparing the shell analogy solution to be
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obtained, with the one already obtained by direct consideration of the
lattice. Thus, the correspondence of bar forces and shell traction
resultants will not be explored.

Considering a free-body diagram as shown in Fig. 5.11, and sum-

ming forces in the vertical direction,

- W
Ny = 50— . (5.50)

2tr sin ¢

At the supports, using Z to denote the verticel component of N¢,

since r = r
b? _ W

5
zwrb

while the horizontel component, X, acting in the radial direction, is

W
X = —m————
21r1:'b tan ¢

Using the generalized expression developed in chapter three (equations

3.7 through 3.10),

z — W(2mry )y .
—w- . - - "b’''o +
FioTy L 27r tan ¢ %} ?
= = _ : Ty
or, ¥ Fi.Fy = W { = T B b
b

thus, using the expression for dz/d&r from equations 5.49, and substituting
its estimated value at r = r, in the last expression for Z Fi';i’ the

latter one becomes,

= = _ rarp V(rp/ra)c - 1
) Fi'ri = Wi c(rb/ra) RN b
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P5 = W/(2nry)

Fig. 5.11. Free-body diagram of the analogous hyperboloidal shell.
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But, using the expression for zb, also from equations 5.49 (evaluated

at r = rb), this can be further reduced to,

2 2
- - T
I F;.F = v{i2_2 . 2, } - (5.51)
Zb

For minimum Z §i';i’
letting 3(} Fi'fi) = 0 ,

I
yields z, = /rg - rz . (5.52)

Expression 5.52 can be seen to be identical to equation 5.47 for the
latticed hyperboloid.

Note also, that when 2, is given by equation 5.52, then from
equations 5.49, ¢ = r. s (5.53)

and therefore, the slope of the inclined legs of the latticed hyperboloid

is either 1 or -1, and they make an angle of 45° with their horizontal

projections.
Applicegbility of theorem to the shell

For the hyperboloidal shell described in the previous section, the
theorem of zero absolute potential energy (equation 2.10) can take the
form, - _
fa¢ &g + fog dvg = ] F..T, . (5.54)
S S
Its applicability will be demonstrated. However, it is convenient to

first develop some expressions to be used.

It can be shown that °¢399 . Thus, by properly defining the thick-

ness of the shell, tr, it is possible to make c¢ = fc and og < fc

everywhere.
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From equation 5.50, letting ¢, = fc’

¢

_ W
tr = 271r fc sin ¢ (5.55)

To obtain an expression for 99> it is first necessary to obtain Ne
N
and then, o, = =2 (5.56)

The value of Ne can be evalusted from consideration of the equilibrium
of a small element of the shell. Since there is no load perpendicular

to the surface of the shell,

. (5.57)

o7&
+
hqéé
]
o

6

Since the radii of curvature, R¢ and Re, are of opposite signs, (a

hyperboloidal surface is anticlastically curved) it can be seen that

both N¢ and Ne, and hence 0¢ and 94 will be of the same sign (i.e. both

compressive),

For this shell, Rg = siz 7 (5.58)
and R¢ can be evaluated from
[ 1+ (82)2 13/2
R¢ = ggz . (5-59)

ar?

Upon using the proper expressions for the derivatives in eguation 5.53,

R¢ can be expressed &as,
z3 ri
Ry = -~ T oosie (5.60)
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Substituting expressions 5.58 and 5.60 into equation 5.57, and solving

for Ng, 5 < (r3(cos ¢)sin ¢\ (5.61)
o = Mo|” =r | - >
Noting that (cos ¢)sin ¢ = %.sin 2¢ , it is verified that the ratio

Ne/N¢ (and hence oe/o¢) decreases as ¢ decreases and z and r increase
(i.e. as r increases from its minimum value of ra). If equation 5.50

is used in equation 5.61, the latter becomes,

2
Ny W (Ya/r)¢ cos ¢ . (5.62)
272
(At z = 0, expression 5.62 becomes indefinite since ¢ = /2 and
cos ¢ = 0. However, by the proper substitutions it can be shown that

Ng = Ny, and consequently, 0g = 0y at r = rg-)
With tr defined by expression 5.55, 0¢ = fc everywhere. Then, to
demonstrate the applicability of equation 5.54, it may be first rewritten

as, 1 - 1
Vg = £ ) Fi.7 - §;£°e G (5.63)

The volume of the shell will be computed directly and compared with

) Ei’ii' Then, by computation of %. éce Vg it will be snown that
c

equation 5.63 is an identity.

The volume of the shell, VS, can be computed as,

Vg = ferr t at ,

vhere d¢ is a differential element of length of a meridian. Using

expression 5.55 for tr,

= ¥ 4
Vg = 3 .
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After a change of varisbles, and entering the limits of integration,

V_ can be expressed as,

s
rb rb
- W dr
vy = ¥ {j S Jf (az/ar)ar } . (5.64)
© ra ra.

The second integral is simply Z - Then, using the expression for dz/dr

from equations 5.49, equation 5.64 becoumes,

Ty
W Ty V(r/ra)2 -1
Vs = ?c{zb * c_j iy & (5.65)
r
a

The integral in equation 5.65 can be integrated by a change of varia-

bles. Thnen,

(5.66)
Comparing equations 5.51 and 5.66, it is obvious that,
_1 O Wi -1 Z
Vs = ?czFi-ri‘ ‘Ec{'—'zo—"}ratan MCVEREEER

Thus, considering equation 5.63, it must now be shown that,

/rZ — 2
1 _ W Db a -
3 Jop @y = IR —Hrtan YR 07 - T - (5.67)

To evaluate the integral and verify the validity of equation 5.67,

use the same differential element Tfor dVS as was used before, then,
_ 1 /Ns .
= Jog avg = ch?r-znr tp a2 .

Cancelling tr, and using equation 5.62,

w2
1 W rg cos ¢
= V = — —_— 2 .
i‘cf % ¥ fcf Zr a
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However, noting that (cos ¢)d% = dr, and replacing z by its equivalent

from equation 5.49,

)

L _ ¥ ra_

tlog s = L | GG -T & - (5.68)
r
a

where the limits of integrstion have been added. Integrating,

Wr3
Ffog @s = G ten MR /E )7 - 1 - (5.69)

In equation 5.69, ¢ can be expressed in terms of Tgs Ty and 2z, by using

equation 5.49. Making such substitution, equation 5.69 yields,

STz
Lfogary = LI T ()T T (570)

Equation 5.70 is exactly as predicted by equation 5.67, and thus completes
the demonstration of the applicebility of the theorem of zero absolute po-
tential energy.

It is to be noted that this demonstration was made for the general

shell of this class, and thus not only for the one that minimizes

Y Fi.%; .
If Z Ei'si is to be minimized (for minimum volume of the lattice to

which this shell is analogous), then, as shown by equation 5.52,

Z-b = vr_bz - raz .

With that substitution, ) fi'fi for the shell (equation 5.51) and for
the lattice are identical, as they should be, while eduations 5.66 and

5.70 are somewhat simplified.



169

Volume of ansalogous shell

In the process of demonstrating the applicability of the theorem
of zero absolute potential energy, the volume of the analogous shell was
computed as shown in equation 5.66. In the comparison of volumes which
is the last section in this chapter, the numerical values for the
volumes of the hyperboloidal shells were computed by subtracting the
quantity,

%- ;0'6 dVS
c
from the corresponding volumes of the lattices. The quantity to be sub-

tracted was computed using equation 5.67 and the known value for 2y

(equation 5.52).

Third Lattice Alternative - Free Form by Shell Analogy

Lattice with constant slenderness ratio

The second latticed alternative (hyperboloidal) has shorter unsup-
ported lengths between intersections than the first (conoidal), and does
provide greater lateral stability by its inherent lateral bracing. Yet,
all segments of the legs in either of those two designs carry equal axial
loads. The second alternative has legs subdivided into segments of
different lengths. Therefore, the different segments have different
slenderness ratios. This variable load-to-length (T/L) ratio is a dis-
advantage since those portions or segments with the lesser T/L ratios
(longer lengths) are more susceptible to buckling. Thus, it is desireble
to explore the minimum volume of a lattice to support the same system
of loads, but with constant T/L ratios. The form of the lattice to

fulfill such requirement will be obtained by a shell analogy.
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Correspondence of bar forces and shell traction resultants

Consider a typical bar of such a structure, as shown in Fig. 5.12.
The bar is shown as it would appear projected on the plane which is
tangent to the analogous shell at a point midway between the ends of the
bar. If it is assumed that the lattice pattern will include only such
typically inclined members, and no ring members (except perhaps at the
top if required), then such typical bar must carry the membrane forces
present in the element of the analogous shell whose projection on the
tangent plane is also shown, dotted, in Fig. 5.12 . The bar field
distances, which define the portion of the shell whose membrane forces
migrate to the bar, can be approximated by the average height, and width,
of the trapezoidal shell element. The equivalent dimensions are labeled
b¢ and bg in Fig. 5.12 to denote the bar field to be used for N¢ and Ng
of the shell, respectively.

Then, using T, and T6 to denote the components of the bar force in

¢
the ¢ and 6 directions, respectively,
bg
T¢ = T}I;—,
= 9
and Te T T -
It then follows that,
b
T 6
N = ={—} ,
) L 'b,
b (5.71)
T
and, Ng = E’(gﬁ? .
Thus , N b,|2
£ = |8 = tan2a : (5.72)
N¢ be

where a is the angle measuring the inclination of the bar (at the point



171

Typicel bar.

Fig. 5.12.
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where Ne/N is being computed) with respect to the meridian passing

¢
through the midpoint of the bar.

Observing equations 5.71 and 5.72, it is obvious that many shell
classes (or lattices) are possible. The conoidel lattice and shell rep-
resent the class wherein o = 0, and consequently Ne = 0. (Of course
in the conoidel lattice, o = 0 implies, by the geometry of Fig. 5.12,
that b¢ is equal to the width of the legs. The legs are then touching
each other, and thus the analogous lattice and shell are one and the
same.) The constancy of the T/L ratio from point to point in the lattice

can be achieved by insuring that N, Ne and o be related as indicated by

¢

equations 5.71 and 5.72. If o varies from bar to bar, then the ratio

Ne/N¢ will have to vary also from point to point in the analogous shell.
 The class selected for this illustrative example will be the one in

which ¢ is constant and equal to 45° for all bars. Then N¢ and Ny will

everywhere be constant and,

= = I _ .
N, = Ny = % S (5.73)

where S is used to denote constant shell traction in all directions. Thus,
although the lengths of the bars will vary, the ratio T/L will be constant

throughout.

Shell analogy solution

Shells in a membrane state of stress with constant traction in all
directions (and of course constant stress with constant thickness, t) have
been of interest to many investigators, as was already mentioned in previ-
ous chapters. In some cases, recourse was made to soap film analogies to

determine their shape, since & soap film membrane, not being able to resist
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shear, assumes a shape such that the membrane traction is constant, and
equal to twice the surface tension of the particular soap solution used
(since the film has two surfaces), regardless of the load imposed on the
membrane. Harrenstien (15) used a system of loads exactly the reverse
of that being considered here (the soap film is tension stressed). He
also derived the analytical equation for the membrane shape. It is his
work that inspired the use of this conceptual system of loads to illus-
trate the theory developed in this dissertation. Unfortunately,
Harrenstien's membrane shape was uniquely determined by the surface ten-
sion properties of the soap solution he used (and, of course, by the
weights and dimensions of his models) and was not the least volume
mexbrene of its class.

The general equations describing the geometry of this class of shell
(constant S) will be independently developed here. The least volume shape
will then be obtained by minimization of Z §i°;i' A1l the equsations of e-
gquilibrium must be used in developing the equations describing the genersal
form for the class of the shell, and to express Z Ei';i in terms of only
one varisble (one degree of freedom) prior to optimizing it.

A typicel shell element is shown in Fig. 5.13. The analogous lattice
element is shown, dotted, in the same figure. The center node, and one-
quarter of the corner nodes of the analogous lattice lie within the shell,
with their centers on the middle surface of the shell. Denote by the sub-
scripts V, R and T the vertical, radial and tangential components of S,
respectively.

The totael load, W, on the shell is applied as before, at r = ra, as

a ring load of intensity, P_, per unit length as follows,

S
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Shell element.

Fig. 5.13.
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Pp. = ¥ X .
s = B (5.7)

Vertical equilibrium of a portion of the shell above an arbitrary

r demands that SV’ the vertical component of S be,

Sy = —— . (5.75)

Furthermore, since no bending is present, if SH is the horizontal com-

ponent of S, g = tan ¢
H
while tan ¢ = %2 (5.76)
dz. bl
and S = JS% + Sé . J

Expressions 5.75 and 5.76 can be used to yield

- 1
= /{__z__esw} — (5.77)

W

H5

Equation 5.77 is equivalent to Harrenstien's corresponding expression to
which it can be reduced by the appropriate notation adjustments. Expres-
sion 5.77 is positive while Harrenstien's is negative, because he chose
his origin at the lower level so that z decreases as r increases. The
opposite is true here, with the origin as shown in Fig. 5.13.

Then, - _
I F5.7 = ) SHbrb + ) SVﬁzb R (5.78)
where the subscript b indicates that the quantity subscripted must be

evaluated at r = Ty prior to the symbolic summation.
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From equations 5.75, 5.76 and 5.77,

W
S = s )
V. 21rrb

s, = ——/[®™)" -1, (5.79)

Hb 2mry W

Th
and, zZ, = f dr .
o fr2Smr 2 J
ra {W } -1

Since r, and z, are constant for the purposes of evaluating equation 5.78,

the summations of va and SHb can be carried out separately. Then,

= = /Sty -
P F T, = Wry {T -1 4 w[ = . (5.80)
r, /{ZW‘ITI'}Z -1

The integral can be evaluated noting that ,
1 du

o} -1
= ——_—= >
E.x'—COSh u /1:2——de s U 1 .
Performing the integration and collecting terms,
\
= 28Ty 1 25Try 2Smr
. R = r _ =1 _ -1 a
L Fi.Fy = W) rp/{——} -1+ (5maaicose T {i——) - cosnH—; M.
(5.81)

If all members of the latticed structure are designed to be stressed
to fc, and if they conform to the requirements to be met for this shell to
be analogous (i.e. pattern as shown in Fig. 5.13, a = 45° for all members,
and all nodes lying in the middle surface of the shell when the lattice is

under the design load), then the lattice volume, VL’ is
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VL = %‘2 Fi‘;i N (5.82)
c

where Z §i°;i is given by equation 5.81l. It is interesting to note that
it has been possible to arrive at a geﬁeral design for the lattice, and
to a statement for its volume, prior to a definitive design, by means of
the theorem of zero absolute potential energy.

The variasble in equation 5.8l is the S/W ratio. When the desired
'S/W ratio is selected, then the shape of the lattice (and shell) is de-
fined by the second term of the right hand side of equation 5.81, which,

with Ty replaced by r, is the equation for z. That is,

287rra

- 1 -1 r2STr -
z = T§7ﬁj§;{c°5h 1{ = } - cosh™{ = 11 . (5.83)

In addition, the lattice members can be designed directly from the previ-

ouly developed expression (equation 5.73), that

s = 7/L .
The lengths of the lattice members can be found once n, the number of
nodes around the periphnery, is known. It may be necessery to adjust

n (or conversely, r. or rb) to insure that a layer of nodes will corre-

a
spond to r_, r, and z,. This is so beceuse, since a = 45°, as soon as
n (and consequently the spacing between adjacent nodes) is chosen, then

the veritical distance between levels of nodes is also determined.

Note taat,
> 1L > (5.8L)
- 21rra

S
W

since lesser values yield imeginary solutions. When the "greater than"

sign applies, the tangent to & meridian at r = Ty» makes an angle, ¢a’
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with the horizontal plane such that,

¢, < w2 ,
end in that case the lattice needs a ring at r = ry to equilibrate the
radial component of S. For the shell, it is best to use a diaphragm or
compression cap plate, rather than a ring, since then the entire shell,
including such a plate, can be biaxially stressed to fc by properly
selecting the thicknesses of the shell (constant) and of the diaphragm
(also constant but not necessarily equal to that of the shell). It can
be verified, by direct evaluation of the volume of such shell-plate

structure that its volume, Vs, is,
- 1 .=
Vg = EZFi-ri ,

or one half the volume of the lattice, as it must be in accordance with
the theorem of zero absolute potential energy.

When the "equal" sign of equation 5.84 applies, then the tangent at
r = r, is vertical and no ring is needed (for equilibrium) in the lattice.
In the shell, the volume of the diaphragm can be shown to vanish in that
case as the required thickness of the diaphragm becomes zero. There is an

infinitesimally small discontinuity in Ny in that case at r, since it must

be zero there and equal to S as soon &s r > rg by an infinitesimal amount.

Minimization of the lattice volume

To obtain the S/W ratio that minimizes z Fi'-i’ and consequently

VL and VS’ is a complicated task not amenable to analytical treatment for
all values of T, and Ty since both equations 5.8l and its derivative are

transcendental equations. In an actual numerical example it would be
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necessary to use the actual values of Ty and Ty and minimize equation 5.81
by numerical methods, or by obtaining a graphical solution to the equation
which is obtained by equating to zero the first derivative of Z Ei';i with
respect to S/W.

To gain an insight into the range of S/W ratios that may yield a
minimum volume structure of this class, equation 5.8l will be rewritten
in a slightly different form. It will then be plotted.

Assume that, 1

27c

|0

where, to rule out imaginary solutions (equation 5.84),
e < r .
- "a
Then, equations 5.81 and 5.82 can be combined, and the resulting equation
can be written sas,

- Trb[ bWy py ey 2 1-(c/r —:Ln——[lﬂ’W] - __1n—-[1+./1-(c/r )2] ]

(5.85)

The three terms of the right hand side of equation 5.85 are separately
plotted (signs included), and also added together, in Fig. 5.14. A ratio
of Ty to Ty of 5/8 was selected to show in greater detail the significant
portion of the plot. Other plots of the third term (the only one affected
by the value of ra/rb) are shown in dotted lines.

To the right of the hashed boundary lies the region forbidden by the
requirement that ¢ < r . The minimum volume is obtained by a c value
close to but less than r,. For the given ra/rb ratio (5/8), the optimum

¢ is graphically estimated to be 0.93(ra). Such & reduction of c from
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¢ = r, achieves only a small reduction in the volume (less than 3%),
but a drastic reduction in the overall height, z,, of the structure (about
39% reduction based on the z, corresponding to ¢ = rp). (A nondimension-
al plot of z, is also shown in Fig. 5.14,) Furthermore, ¢ could be as
small as 0.88(ra) and the volume would still be equal to or less than
that of the structure with ¢ = rg. (With ¢ = 0.88(ra), 2, is only L7% of
its value when ¢ = ra.) Thus, if the height of the structure is an impor-
tant factor, then the choice of ¢, and consequently of S/W, should be
carefully investigated. The latitude on the choice of ¢ is less, and its
effect on z,, much reduced at much lesser values of ra/rb.

For the volume comparisons or the section that follows, it is as-
sumed, for ease of computations, that the minimum volume of this class
of structures corresponds to c = Tg. In that case, z,, can be expressed,

using equation 5.83 evaluated at r = r, and with S/W = l/(2ﬂra), in the

equivalent form,

2, = T, In rb/ra + /(r.b/ra)2 -1] . (5.86)

Similarly, from equation 5.77,
ra/Tp
(5.87)
Y1~ (r/r)*
a b

tan & =

where, as before, ¢ = ¢b'

Volume Comparisons and Observations

Using equations 3.7 through 3.10, the volumes of the three latticed

alternatives considered can be expressed as,
Wrg  Tp/Tg
s & —— ] = +
Vain fc tan ¢ z/rqy }min i

(5.88)

where tan ¢ is the tangent to & meridian in the analogous shell at r = 1y,
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and z is the overall height, that correspond to vmin'

The corresponding expressions for tan ¢ and z, as developed earlier,
are collected below using the original equation numbers for reference pur-
poses.

1. Conoidal lattice:

1
tan ¢ =T —_—m,——— , (5.7)
v1- ra7rb
and, z = r¥(x /r )¢ - n/r, . (5.9)

2. Hyperboloidal lattice:

1
tan ¢ = . Ch
an Vaas (fa/fb)z (5.47)
and, z = rg/lny/rg)e -1 . (5.48)

3. Lattice of constant slenderness ratio, for ¢ = r (not for Vmin):

ro/Ty
tan ¢ = , .
an N CWWE (5.87)

ry In[ rp/ry + Hrp/rg)é =11 . (5.86)

and, 2

The heights of the structures, z, and the corresponding volumes are
plotted in Fig. 5.15 for varying rb/ra ratios.

In Fig. 5.15, the hyperboloidal and conoidal lines approach each other
for higher ry/r, values. This is as should be expected, since ry/rg = =
implies that rg, is zero and then, the hyperboloidal lattice is indistin-
guishable from the conoidal. Then, tan ¢ = 1, and z = ry for both.

It is to be noted, as predicted by the first alternative design, that
the volume of the conoidal lattice is a global minimum for the lattices.

As additional restraints are placed on the geometries of the lattices (i.e.

hyperboloidal, lattice of constant slenderness ratio) the minimum volume
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Fig. 5.15. Heights and volumes of alternative structures.



184

increases. For low rb/ra ratios (up to sbout 1.8), the lattices of
constant slenderness ratios have an optimum z greater than the conoidal
lattices but less than for hyperboloidal lattices.

" The volumes of the analogous shells are also shown. The conoidal
shell volume is the same a&s that of the conoidal lattice. The volume of
the shell of constant traction (constant S) is one-half that of the lat-
tice of constant slenderness ratio. (Since ¢ = Ty for the volumes shown,
the shell does not have & plate, and the lattice does not have a compres-
sion ring. If c # T then the ring and plate would have to be provided,
but the volume of the shell would still be one-half that of the lattice
since the shell-plate structure would be entirely biaxially stressed to
fc.) The volume of the hyperboloidal shell is less than that of the hyper-
boloidal lattice by the amount %.foe dVS which was compuied using equa- |
tion 5.67. | ¢

The hierarchy for the shells is the reverse of that of the lattices.
That is, the conoidal shell, which is uniaxially stressed, always has a
minimum volume larger than that of the hyperboloidal shell, which has some
stress in the tangential direction in addition to being fully stressed in
the meridional direction. The shell of constant traction, being biaxislly
stressed to fc (and thus of constant stress, fc), is capable of providing
a minimum volume less than that of either of the other two alternatives
for r'b/ra ratios of up to eout 2.2. For larger r.b/ra ratios, the least
volume structure of constant S has a volume larger than the other two.

It is felt that the volume of the fully stressed (constant S) shell
is greater than that of the others at the greater rb/ra ratios because it

represents a class of structures so different from that of the other two,
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that the load systems (including the reactions) are no longer com-
parable.

The conoidal and the hyperboloidal shells can be considered to be two
sub-classes of a larger class of shells, i.e. those that can be generated
by straight lines generatrices. That they become one and the same when T
is zero, has already been pointed out. Note also that the conoidal lat-
tice (or shell) can be generated by letting m = 0 in the expressions
methematically defining the hyperboloidal lattice (equations 5.44), in
which case, 4 = r, (equation 5.45). Cémparing equations 5.38 and 5.39
with equations 5.46 it can be seen that then the volumes for both sub-
classes become identical for all Tg- Furthermore, note the similarity
of expression of ) Ei'fi in that, for minimum } Ei‘fi’

y Fi‘fi = 2Wz (5.89)
for both. The contribution of the horizontal forces and the vertical
forces are equal to each other in each of the two structural sub-classes.
They differ only in the expression found for z in each shell. Thus, the
lcad systems of both represent generally comparable systems in the sense
impiied in the hierarchy of structural levels of chapter two. Since the
copoidal lattice is a global optimum for the larger class, it follows that
the volume of the hyperboloidal lattice would never be less. Furthermore,
it also follows that, since the hyperboloidal shell is also stressed in the
tangential direction (albeit not to fc), then the volume of the conoidal
shell, which is always stressed uniaxially, should never be less than that

of the hyperboloidal shell.
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In contrast, the constant S shell cannot be generated by straight
lines, and could never be made to occﬁpy the same space of either of the
other two by adjusting the variables which define it. Furthermore, its
load system cannot be considered fully comparable to either of the other
two. Note that when ) ii'ii is a minimum for this shell (or lattice)
it does not fulfill the condition expressed by equation 5.89. In addi-
tion, the contribution of the horizontal forces (to ) Ei';i) is much
larger than that of the vertical forces, the disparity becoming more
pronounced with larger rb/ra ratios. Thus, this class is more efficient
(yields a lesser volume) for some rb/ra values, and less efficient for
the higher rb/ra ratios when the horizontal thrusts must increase greatly
to keep the stress trajectories within the shell. In those cases (the
larger rb/ra ratios), it is felt that the condition of constant S becomes
a constraint which requires greater material energy than that needed to
support the loads. That is, the tangential stress is needed to bend the
stress trajectories and force them to remain within the structure. (In
the same vein, the most efficient of all classes of structures for this
system of loads would be one in which it is permissible to make Ty = Ty
a trivial solution resulting in a requirement for zero volume and zero
stresses in a non-existent structure.)

In summary, this series of examples illustrates the method of eppli-
cation of the theorem (classical and shell analogy); it shows the corre-
spondence of Z ii';i’ volume and geometry for shells and lattices; and,
it demonstrates the general gpplicability of the hierarchy of structures

of cnapter two. It is cautioned that in searching for a superior class
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of structures, a check on the magnitude of X F..;_ should be made so
i i
that it is not unduly increased in order to force the new structural

class to apply.
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SUMMARY AND CONCLUSIONS

This dissertation developed a new theorem named the theorem of zero

absolute potential energy whose mathematical expression is
m n_ _
% { fclde + fc:zdvJ + jc:3<1vJ } - gFi.ri = 0.

The mathematical expression is valid for all three-dimensional structures
in internal and external static equilibrium under any system of loads. The
expression is a generalized form of Maxwell's theorem for frameworks.

The theorem was used to develop a hierarchy of structural levels
arrenged in order of increasing material efficiency according to the state
of stress existing in the structures belonging to each level. From this,
it is concluded that the most efficient structures to support a given sys-
tem of loads would be those which are fully and homogeneously stressed (all
in tension, or all in compression). The least volume structure among those
fully and homogeneously stressed will be the one with the least numerical
value for ) Ei';i' Triaxially stressed structures fulfilling the above re-
guirements have lesser volume than biexially stressed structures, which, in
turn, have Lesser volume than uniaxially siressed structures. Least volume
statically determinate and statically indeterminete structures, if they are
possible, provide the same volume when optimized with respect to a single
system of loads and if their respective z ii'ii values are of the same
magnitude.

The above observations and conclusions led to a concept of optimization
by variation of Z Ei';i wherein the points of application of the loads are

ellowed tc vary along the line of action of the loads as the configuration
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of the structure is varied.

A sequence of examples of the synthesis of alternate structures for
the support of the same loads was presented. These examples illustrate
the observations made above, as well as the transitions from one hierar-
chical level to other more efficient levels.

. The theorem, when coupled with the concept of variation of z fi';i in
the structural synthesis of least volume structures, results in significant
simplifications of the optipizaxion process. The number of variables is
greatly reduced in the case of statically determinate structures. As a re-
sult, only the constraints of statical equilibrium need be considered. In
general, the detailed design of the structure néed not be addressed until
after the optimum form of the structure is determined from the optimization
process.

Three optimization methods utilizing the above concepts were developed
(classical, nonlinear programming, and shell analogy) for application
to three-dimensional nonplanar lattices. These were illustrated in the
optimization of rectangular grid lattices, network domes, and Schwedler-
like domes. A means to consider the volume of the tension ring, if pre-
sent, was also illustrated.

The classical method is also directly applicable to shells in & mem-~
brane state of stress (the most efficient state of stress for shells) if
their shape is restricted to a specific class (hyperboloidal, paragoloidal,
etc.) expressible in a closed-form, integrable function. In general, these
shapes will allow the shells to be fully stressed in only one direction.

The optimization of a paraboloidal shell is presented as an illustration.
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Possible ways are indicated for the extension of the method to the optimi-
zation of more general shapes. These include the use of numerical integre-
tion methods, or the incorporation of the minimization of ) ;i';i into the
method developed by Smith and Wilson (32) for the synthesis of membrane

stressed shells.
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APPENDIX - ALTERNATE DERIVATION OF THE THEOREM OF
ZERO ABSOLUTE POTENTIAL ENERGY

The equations of equilibrium of a differential element of a struc-

ture (Fig. 3.1) are

30, . thz>+ 3Ty, -
ox 3y 3z >
30 oT 9T
Yy Xy Y
oy * ox * 3z = =0 2 (A.1)
30Z . aryz . aer -0
and 9z oy ox * )
Equations A.l can be arpvitrarily multiplied as follows,
:le] 9T 9T
[t g g laamma =0,
2y X
o) 3T 9T
[+ X+ FE]yaxayaz = 0, (4.2)
2y X oy ox 9 .
-Te] 9T 3T
z yz . __xz -
e [l gy T e = 0.

without altering their validity.

Each of the three equations A.2 results in the addition of three

integrals of which the following expression is typical.

3 3 - 5
j’j’f—a—xxdxwdz+fff-a—-rﬂxdxdde+fff;szxdxdydz=O.
zy x °F zy x zy x %%

(A.3)
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In general, using integration by parts,
[ g'(x) k(x) ax = g(x) k(x) - { &(x) k'(x) ax . (a.1)

The integrations indicated in equations A.2 will be carried out over
the entire structure (or over the entire range of X, ¥ and z in the struc-
ture) of which the element is a part.

Applying equation A.4 to the first term of equation A.3,

X
2
90 '
Jistxaxayaz = [f[xo.)|ay az - [[foax dy @z . (A.5)
X

1

The second term of equation A.3 becomes,

Y2
o
1! E;EI.dy x dx dz = [f [Tyyl|x dx dz - fffrxy (0) x dx dy az .
y (A.6)

1

Similarly, the third term of equation A.3 can be written as,

22
oT
fjfazXZdZXdXdy = ff [‘rxz]xdxdy—jff‘:xz (0) x ax &y dz .
Z (A.7)

Thus, considering equations A.5, A.6 and A.7, equation A.3 becomes,

X2 Y2 Z9
fllx o J|ay az + fflr, ]ix ax daz + [fl1y,)|x ax @y - [ffo, ax dy dz =0
* 4! % (4.8)

Similarly, the other two of equations A.2 would give rise to expressions,
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Y2 ) Z
iy oplax dz + ff['rw] y dy dz + ff[ryz] y dy dx - fffcy dx dy dz = 0 »
¥ o | 2 (4.9)
and,
22 Y2 X
[flz o,]|ax ay + ff[ryz] z dz ax + ff[r, ]|z dz &y - [ffo, &x @y dz =0 .
31 Y1 X (A.10)

Note that in expression A.8 the double integration terms represent the
sum of "magnitude of force component in x-direction multiplied by the
x-coordinate of its point of application" for all external boundary forces.

Defining this sum by z X; x5, the expression A.8 can be rewritten as,
i

X x5 - Jo o av = 0 . (A.11)
i v

Similarly, from expressions A.9 and A.10,

YY:y; - fo,av = 0 , (A.12)
i Tt g
and, g Z; 25 - \{cz av = 0 . (A.13)

Although eguations A.11, A.12 and A.13 could be useful in some cases,
it is more useful, for the purposes at hand, to add them to yleld,

‘j;ox c1v+\ffcy <1v+\}r'oy v = i{xixi+§1'i yi+§zi 25 (A.1k)

An arbitrarily oriented boundary force could have x, ¥y and z compo-
nents present in three terms of the right hand side of equation A.1lLk. The

right hand side could be expressed in the statically equivalent form
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Z F’i.z"i where fi is the force vector at point i, and ¥; is its respec-

tive position vector. Then, equation A.14 can be expressed as,
Jox &V + foy av + fo, av = ] Fy.%; (A.15)
i

In equations A.l body forces were assumed to be zero for clarity. If
body forces are present, the terms to be added to equations 2.8, A.9 and

A.10 would be, respectively,
[ff £xaxady az
Hliyvawa ,

and f f f Z z dx dy dz

where }-{, Y and Z are the body forces per unit volume in the x, y and 2z
directions, respectively. These terms are directly analogous to those

of the boundary forces to which they could be added. Thus, the right hand

., must include the contributions of. the body

side of equation A.15, ] F;.F;

forces if they are present.

BEquation A.15, identical to eguation 2.10, is a methematical expres-

sion of the theorem of zero absolute potential energy.
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