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CHAPTER ONE - INTRODUCTION MD LITERATURE SURVEY 

General 

The purpose of structural design is to develop a structure which will 

safely perform its intended functions at an acceptable cost. For struc­

tural purposes, these functions are ultimately expressed in terms of 

forces or loads which the structure must support. However, other con­

siderations such as esthetics and cost may restrict the general form of 

acceptable structures. 

Safety is assured by insisting that the structure should function 

without excessive deformations and that either 1) the stresses do not ex­

ceed a certain fraction of the ultimate strength of the material, or 2) 

the loads do not exceed a certain fraction of the ultimate loads for the 

structure. 

The determination of what constitutes an acceptable cost varies 

greatly. Even the definitions of the terms by which the costs are to be 

assessed (such as monetary expenditure, construction effort, time re­

quired for construction, weight, volume, special materials or construction­

al techniques required, and possibly, operating expenditures) are likely 

to vary from time to time for each location, and for structures of 

different purposes. 

The process of arriving at a simultaneous statement of the form of 

the structure and the loads to be supported is more of an art than a 

science on account of their mutual influence. Little has been written 

about this process. Torroja (39) has written what is probably one of the 

finest philosophical expositions of the process. Otto (23) has gone 
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deeper into a discussion of the very reasons which motivate man to build. 

After the general form of the structure and the loads are defined, the 

design process is still complex and requires great experience as the loads 

are still affected by variations in the design. Finally, experience is 

also required in judging the structure and its costs as acceptable. 

Optimum structural design techniques assist the designer by allowing 

him to determine directly the form of the structure that will support the 

loads with the minimum cost. Such knowledge, when available, is invaluable 

in deciding if the additional cost of alternative designs is warranted in 

view of their additional features. 

The purpose of this dissertation is to explore the conditions under 

which three-dimensional structures achieve their least volume, and culmi­

nate in the development of methods suitable for the structural optimization 

synthesis of nonplanar latticed roof structures-

It is necessary, for proper development of the theory, to contrast 

conventional structural design and optimum structural design procedures, 

and to review at some length certain concepts to be used later. 

Conventional Structural Design 

As opposed to the elusiveness of the art of design as discussed above, 

the analysis of structures (and stress analysis of structural components) 

has been developed into a science. There is a considerable body of knowl­

edge available, expressible in useful mathematical equations, in the theory 

of structural analysis. These mathematical tools allow the structural 

analyst to determine uniquely and with acceptable accuracy the stresses and 

the deformations of the structures he analyzes. 
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It is not surprising then, in view of the mathematical tools avail­

able for analysis, that structural design has traditionally been an 

iterative process where: 1) the geometry of the structiire is assumed on 

the basis of an informed guess and the loads determined, 2) the structure 

is analyzed, and then, 3) the geometry is modified on the basis of the 

results of the analysis. This process continues until the structure is 

deemed to be of an acceptable cost not worthy of further refinement. 

The structure resulting from the above process is only as economical 

as the informed guesses have been. It is almost certainly not the most 

economical of all possible alternatives. 

There is no intent here to slight the great accomplishments of struc­

tural designers. The informed guessing is based on the experience of the 

entire human race. Otto (23) considered this constructional experience as 

a component of the evolution of man. In addition, he reported that since 

nature provides, in some organic structure, examples of structural forms 

of the greatest known efficiencies, these forms are now being studied for 

possible application in structural design. Prager (27) also commented 

that the human femur shows a trajectorial system remarkably similar to a 

pattern developed by using minimum weight optimization techniques. In 

the past, designers have undoubtedly been using such conscious or uncon­

scious observations of nature to guide their informed guessing. 

Still, in the conventional design by iterative process, it is only 

the designer's experience and that of his predecessors which form the basis 

for his deciding whether the final structural cost is acceptable. 
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Optimum Structural Design 

In contrast to conventional structural, design, optimum structureil 

design methods leave the geometry of the structure as variable (within a 

class of structures) and formulate the problem in terms of the desired 

structural behavioraJ. constraints (stresses, buckling, and deformations). 

There will be a range of possible geometrical solutions that satisfy the 

constraints. An optimization technique is then used, usually with the 

objective of minimizing a certain cost, to select the optimum geometry 

among those possible. 

In classical optimum structural design procedures, the behavioral con­

straints are satisfied only one at a time. Thus, the optimum struc­

tural design procedures can be classified, according to Bamett (2), into 

1) Strength Designs (elastic or plastic), 2) Stability Designs and 3) 

Stiffness Designs. He also pointed out that no analytical solution appears 

feasible for the simultaneous satisfaction of all three kinds of con­

straints since the problem becomes extremely complex. In addition, it 

should be noted that analytical methods are used to optimize the structural 

form only with respect to a single system of loads. The system may con­

sist of a multiplicity of loads, but all must be simultaneously applied. 

Stability designs 

Stability designs aire based on the concept that, if the structural 

elements to be designed are subject to buckling, then the minimum weî t 

(cost) is obtained when the elements are so proportioned that all the possi­

ble buckling modes occur simultaneously. This is a very powerful method 
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amenable to straight forwsird solutions for the conditions postulated. For 

an example, see Gerard (l4). The stability design method, however, is not 

likely to yield an absolute minimum. The very fact that the elements are 

subject to buckling failure, may in itself indicate that the problem has 

been too narrowly defined and that some configurational modification, if 

permissible, may result in a design not limited by buckling and with lesser 

weight (cost). 

Stiffness designs 

Stiffness design methods are, as their name implies, particularly 

well suited when the requirement is to design a structure with one or more 

deflection limits. These methods are most useful in developing the 

material properties to be considered in choosing the best material among 

those available. If the deflections in question are proportional to the 

loads being considered, then stiffness designs are identically the same as 

those resulting from strength design methods (Barnett (2)). This is 

logical and to be expected since, as shown by Cox (10), strength designs 

provide the least deflection possible under the given loads. 

Strength designs 

Strength design methods are based on the philosophy that the 

lightest structure will be one in which all the structural elements are 

stressed to their maximum allowable values (Barnett (2)). That such is 

the case for statically determinate structures can be easily verified. It 

is not so readily apparent that this should be so for statically indeter­

minate structures optimized with respect to a single system of loads. It 
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is felt that the difficulty in showing that the optimum is a fully stressed 

design (even for hyperstatic structures) resides in that the geometry of 

the structure is usually given in terms of its unloaded configuration. 

Consequently, the requirements of compatibility of deformations unneces­

sarily complicate and obscure the optimization process. It has been shown 

that in many cases the optimization process reduces a hyperstatic struc­

ture to a static one as the redundant members vanish (Cox (10)). In other 

cases, it has been shown that it is possible to replace static structures 

with statically equivalent hyperstatic structures, also fully stressed, of 

the same but not lesser volume (cost) (Prager (27))- It is hoped that the 

ûheorem to be developed in this dissertation will shed some light on this 

point. 

In plastic strength design, the optimum structure is achieved when 

designed to be just at the point of collapse, through a continuous collapse 

mode such that the dissipation of energy per unit volume is constant 

throughout, the entire structure (Barnett (2) ). 

Numerical solutions 

No review of structural optimization methods would be complete without 

discussing at some length the numerical procedures that have become possible 

with the advent of computers. 

Any structural design problem can be formulated as a generalized opti­

mization problem in which a certain objective function is to be optimized 

subject to a certain set of constraints. Because of the nature of the con­

straint equations, structural optimization problems are usually nonlinear. 

Therefore, the development of suitable structural optimization methods has 
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closely followed the development of nonlinear programming methods in 

operations research. Conceptually, each constraint equation describes a 

surface in an N-dimensional space that corresponds to the N parameters to 

be varied. The global optimum occurs where the surface described by the 

objective function heis its minimum (maximum) value and just touches (or is 

tangent to) the surface of the solid bounded by all the constraint sur­

faces. Schmit and Richer (3l) applied this concept to the structural opti­

mization problem. Their formulation is general enough to be applicable to 

structures subject to multiple systems of loads and to the use of different 

materials. 

Since linear programming problems are readily solved, many structural 

optimization methods seek to linearize the constraint equations. Ander-

heggen and Thurlimann (l) linearized the constraints in the optimization 

of a skew highway bridge, continuous over several spans, by expressing 

them in terms of the moment at each section rather than in terms of the 

stresses as is more often done, and by assuming the cost to be proportion­

al to the resistance required of each member. Moses (21), amd Romstad and 

Wang (28) linearized the constraints by approximating each parameter by a 

single term of its Taylor series expansion. This has also been called the 

"cutting plane method". 

Another approach to deal with the nonlinear programming problem has 

been to develop certain algorithms for directed iterative search procedures 

in the feasible space, and for accelerating the convergence of such pro­

cedures . Among the algorithms used are the alternate steps method of 

Schmit and Kicher (31)» the gradient projection method used by Brown and 

Ang (6), and the steepest descent and side-step procedure of Dobbs and 
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(î ). Crockett (ll) used a sequential unconstrained minimization 

technique, developed by Fiacco and McCormick (13), which combines the con­

straint equations with the objective function to generate a new function. 

A computer program for the solution of the general nonlinear programming 

problem, based on the same technique, has been written by Sposito and 

Soults (35). 

Distinct advantages of numerical optimization procedures are that they 

permit the satisfaction of the three constraints (strength, stability, 

stiffness) simultaneously, as well as the optimization of a structure with 

respect to multiple systems of loads. Using these methods, Schmit (30), 

Kicher (l6), and Romstad and Wang (28), proved that the optimum structure 

for multiple systems of loads need not be fully stressed. Soosaar and 

Cornell (34) used numerical methods to optimize, topologically as well as 

geometrically, multistorey buildings for minimum monetary cost. The 

sensitivity of the results to changes of material-to-fixed-cost ratios is 

also investigated therein. 

Two difficulties exist with numerical optimization procedures. First, 

there is often a loss of grasp of what is happening in the optimization 

process. Thus, the designer is apt to feel ill at ease as he no 

longer has a clear "feel" for the way in which changes in design parameters 

affect the behavior or the cost ol" the structure. (The sensitivity analy­

sis of Soosaar and Cornell mentioned above is an attempt to restore this 

"feeling", while Kicher (l6) advocates the use of Lagrangian multipliers so 

that the designer can at least know which constraint or constraints are 

operative at the optimum solution.) Secondly, because of the nature of the 
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constraint equations, it is not possible, in most practical cases, to 

provide clear proof that the optimum found is a global optimum and not 

merely a local optimum. The most usual way to provide some assurance that 

the global minimum has been found is to start the optimization process at 

different points in the feasible space and verify that subsequent trials 

either, converge to the solution already considered to be the global opti­

mum, or else, to other local optima no better than the global. 

A limi-cation of numerical optimization techniques is that the struc­

tural form whose geometry is to be optimized must be very explicitly de­

fined. The optimum found will apply only within that class, and there may 

be no indication that an acceptable change in structural class may result 

in large changes in the value of the optimization objective function. To 

guard against the possibility of excluding from consideration a particu­

larly efficient class of structures, it is best to define the class as 

broadly as possible. This requires an increase in the number of variables. 

Consequently, the complexity of the problem and the computational demands 

grow rapidly, while the assurance of having found a global optimum de­

creases . 

Optimization objective 

While it is obvious that the functional requirements of a structure 

should not be compromised in optimization, surely no designer will insist 

that there is no range of variations possible in meeting the needs. Nor 

will he insist that the fulfillment of the needs, and even the beauty of 

the structure is completely unrelated to its structural concept or its 

efficiency. Torroja (39) commented that a properly designed structure 
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should convey the feeling that the loads are supported in a clear, uncom­

plicated manner and "without discomforts". Although he pointed out that 

the most beautiful structure is not necessarily the most efficient struc­

turally, he did say: 

"There are exceptional cases, but in general it can be stated 
that in any given circumstances, the condition of the least 
cost or the greatest economy should always be observed and 
respected." (Torroja (39)). 

Even if the least cost structure is not to be selected, it would be 

desirable to know what its form is and what its cost is. This information 

serves as a standard in judging the cost to be paid in deviating from the 

least cost form. 

In this dissertation, the quantity of material will be the sole cri­

terion by which relative structural merit will be judged. Volume will be 

the measure of the quantity thereby eliminating the need to consider mate­

rial properties. If least weight rather than least volume is desired as 

an optimization objective, it is a simple matter to modify the basic equa­

tions by making use of the material properties. The use of least volume 

as the optimization objective is consistent with usual objectives in 

strength design methods, and there are a number of reasons which justify 

it. 

Other measures of efficiency or cost, such as monetary expenditure, 

although important, are likely to change. Otto (23) pointed out that 

costs are likely to be higher for new structural systems through lack of 

experience in the design and construction techniques and in estimating. 

He stated that consequently, total energy consumption (material, man-

hours, erection time, maintenance, etc.) is a better yardstick since in 
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the long run the structure requiring the lesser energy expenditure will 

probably be more economical. He also considered lighter structures pref­

erable as being more adaptable, with structures thought of as massless 

being the ideal. Smith and Wilson (32) pointed out that large, massive 

structures usually imply hî  cost, and that in some cases such as dams 

the quantity of material is the critical factor in determining the eco­

nomic cost. Cox (10) stated that least weî t is the obvious criterion 

there being no point in using more material than is required, and since 

normally other costs follow weight when even the operating cost is usually 

less for lighter structures. In some structures, such as aerospace struc­

tures, the weight may in fact be the critical factor. 

Conceptual Review of Strength Optimization Design 

This dissertation will develop a theory that is more closely related 

to strength design methods. It is thus necessary to review some concepts 

and theorems of strength design methods to be referred to later. 

Galileo's studies 

It is generally accepted that the theory of elasticity had its origin 

with the studies of Galileo, in I638, into the configuration of beams of 

constant strength (Barnett (2), Wasiutynski and Brandt (iiO)). Thus, the 

conceptual basis of strength design optimization methods is as old as the 

theory of elasticity itself, and as old as 

" the notion of force and the laws of mechanics as a 
foundation for designing structures." (Wasiutynski and 
Brandt (4o)). 
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Maxwell's theorem 

In 1369, Maxwell (19) developed from statics (and also through the 

use of a hypothetical dilatation of space) what has come to be known as 

Maxwell's "theorem, applicable to framed structures. Mathematically, and 

in the notation used in this dissertation, the theorem can be expressed as 

follows : 

I ït Lt - I ̂ c Ife = I ?i'% (1.1) 
t c i 

where and are the numerical values of the forces in typical com­

pression and tension members, respectively; and are the lengths of 

such members ; is a typical external force vector (reaction inclusive) 

acting on the structure at point i; and rj_ is the position vector of the 

point i with respect to an arbitrary origin. 

If each strut or tie is proportioned so that it is stressed to its 

allowable limit fg or f ̂, then considering that in general, if A is the 

area of ûhe member, 

T = fA , 

eq.uation 1.1 can be written as 

ft Vt - fc Vc = I ?i-?i (1.2) 

where and are the total volumes of all the compression members and 

all the tension members, respectively. 

The significance of Maxwell's theorem, and, in particular, of the en­

suing equation 1.2 has been amply discussed by Owen (25). Noting that the 

total volume of a structure, V̂ , is 

Vg = + Vg , (1.3) 
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use of equation 1.2 can be made to express as follows, 

V = V (1 + f /f ) + k /f , •> 
T c c t m t (l.U) 

\ \ - V^= J 

where, following Owen's notation, is used to denote .r̂ . Since 

the volume cannot be negative, equations l.k indicate that, if k̂  is posi­

tive, the minimum volume structiire will be one with no compression members, 

i.e. = 0 , if this is geometrically possible. Then 

Conversely, when is negative the minimum volume structure would 

be an all compressive structure, if this is possible. When k̂  ̂is zero, 

equation 1.2 indicates that an all tension or all compression structure is 

not possible. In such a case, 

ĉ Vc = ft \ if fc = ft ' Vg = Vt . 

Sius, when k̂  (or ) is zero. Maxwell's theorem does not help 

in determining of uhe least volume structure. 

Michell str-actures 

In I90U, Michell (20), recognizing the limitations of Maxwell's 

theorem, developed the conditions to be fulfilled for the volume of a 

tension-compression frsimework to be a minimum. Equations 1.2 and 1.3 can 

be used to yield the expression 

24% = i h -h  (1-5) 

Michell noûêd that, for any given value of ̂ Fĵ .r̂ , the minimum total 

volume, V̂ , will be obtained by insisting That the quantity within the 
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brackets be a minimum. Thus, since fV = T̂L, 

+ I?cLc)lmln (i-" 

To develop the conditions that must be fulfilled by a structure for 

its volume to be a minimum, Michell then postulated a virtual deformation 

of the domain occupied by the structure such that, while the supports are 

not displaced, the domain is dilated by +e along tension members and by -e 

(a contraction) along compression members. Furthermore, he postulated 

that nowhere in the domain is the dilatation greater than +e or less than 

-e. By computing the change in strain energy under such a virtual defor­

mation, Michell proved that, if the structure is such that it can be sub­

jected to a deformation as described above, then no other statically 

equivalent structure can have a lesser volume, provided, of course, that 

all members are fully stressed. 

It is obvious then, that in a Michell structure, the members must lie 

along lines of principal strains ±e in the virtual deformation strain 

field. Compression members must be orthogonal to tension members. Mem­

bers carrying stresses of the same sign may meet at any angle since the 

deformation in that portion of the domain is then an isotropic expansion 

or contraction. 

Michell considered the structures resulting from the application of 

Maxwell's theorem as special cases wherein the geometry of the loads is 

such that all compression or al 1 tension structures are possible and thus 

the Michell strain field is then an isotropic expansion or contraction. 

Some examples of Maxwell structures are shown in Fig. 1.1 and of 

Michell structures in Fig. 1.2. 
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Static. b. Hyperstatic. c. Mechanism. 

Fig. 1.1. Maxwell structures of equal volume. 

Least volume for central 
load. 

b. Structure restricted to 
lie entirely above sup­
ports . 

c. Cantilevers. 

Fig. 1.2. Michell structures. 
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Cox (10) has made a detailed study of Michell strain fields and con­

cluded that they can all be generated by a single kernel, and, that it is 

very probable that no Michell strain fields exist in three-dimensional 

space. 

Templeman's note 

In 1966, Templeman (36) suggested that the lower limits on the volume 

of Maxwell/Michell structures holds only in the case of structures made up 

of uniaxially stressed members. If the structure can be made of a combina­

tion of uniaxially stressed members and of sheets stressed biaxially 

by stresses of like sign, and, if maximum shear is the criterion of fail­

ure, then, according to Templeman, 

Vt = J (1.7) 

where is the volume of the amount of material stressed biaxially. 

Templeman pointed out that this is true, from a philosophical point of 

view, because the biaxially stressed material is now being utilized twice. 

He demonstrated that it is feasible, in some cases, to add loads to a 

structure (accepting a change in %F\.r̂ ) to make possible the use of 

biaxially loaded sheets and thereby reduce the volume of the original 

structure. He concludes that, potentially,, 

in a fully biaxially loaded structure, and, potentially, 

T̂ " ̂ T ~ Y~f (̂ "9) 

in a fully triaxially loaded structure. 
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Scope of the Dissertation 

This dissertation will include: 

1. the derivation of a new unifying theorem for three-dimensional bodies 

(the generalized counterpart of Maxwell's theorem for frameworks) which 

underlies and links the observations of Maxwell and Templeman, and from 

which it is possible to deduce the conditions for least volume structures 

with respect to a single system of loads (chapter two), 

2. the detailed development of methods suitable for the optimum struc­

tural synthesis of nonplanar lattice type structures, and the development 

of general methods for the optimum structural synthesis of shells with 

suggestions of the lines along which detailed procedures could be develop­

ed (chapter three), 

3- the presentation of several examples which illustrate the applicability 

of the methods, namely, the optimum structural synthesis of rectangular 

grid lattices, of network domes, of Schwedler-like domes, and of a para-

boloidal shell, with and without tension rings (chapter four), and 

k. the presentation of a sequence of alternate structures synthesized 

for the support of the same loads to illustrate the relationship between 

uniaxiaJ.ly stressed and biaxially stressed structures and the transitions 

between them (chapter five). 
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CHATTER TWO - THEOBETÏCAL DEVELOÎMEOST 

Theorem of Zero Absolute Potential Energy 

Mathematical derivation 

Let a generalized, three-dimensional structure be subjected to a 

single system of loads, F̂ , which is in external static equilibrium. See 

Fig. 2.1. A small differential element of volume of size dx, dy and dz 

can be depicted in a generalized state of stress as shown in Fig. 2.2. 

Let the structure be replaced by an equivalent system of molecules, 

each concentrated at the center point of the corresponding differential 

element of volume. For the system of points to be statically equivalent 

to the original structure, each point will be considered to be held fixed 

in space by forces of attraction or repulsion between it and the adjacent 

points. Such forces will be equal to the resultant of the normal stress 

acting on the face (of the differential element of volume) that separates 

the two points. Thus, if Q,̂  is the force in the x direction, 

= Ox dy dz (2.1) 

Similar relations apply to the other faces and normal stresses. In addi­

tion, each point or molecule is acted upon by three twisting couples, 

each equal in magnitude to the resultant of the shear stresses acting on 

opposite faces multiplied by their separation distance. 

Assume now that the space occupied by the equivalent system of points 

undergoes an imaginary dilatation of magnitude e which is constant in all 

directions. Assume farther that all forces in the system remain constant 

throughout the dilatation. Because the dilatation is constant in all 

directions, the structure and all its parts are not distorted and remain 
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/ 

Fig. 2.1. Generalized structure. 

zx 

xz 

dz xy 

Fig. 2.2. Differential element. 
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always similar to their original configuration, having changed only in 

size. Since the forces remain of constant magnitude, and their relative 

orientations remain unchanged by the dilatation, the statical equilibrium 

of the external system of forces is not disturbed. Similarly, the internal 

equilibrium of all the points is not disturbed, and the forces acting on 

all the molecules remain constant. Only the relative distances between the 

molecules are changed. 

If the dilatation is assumed to have occurred adiabatically so that 

no energy enters or leaves the system, then the internal work done by the 

forces acting between the points plus the work done by the external force 

system, , during the dilatation must be equal to zero. 

In computing the work done by The internal system of forces the 

couples need noc be considered because the relative orientation of each 

point with respect to the others is not disturbed and therefore the couples 

do no work. Noting that the original distances between the points are dx, 

dy and dz, -he center to center distances of the elements, the differential 

element of work, dV̂ , done by the forces between the points is 

dV̂  = -(Qx e dx + Qy e dy + %% e dz). (2.2) 

where Qy and assumed 00 be positive if tensile, and e is as­

sumed to be positive if causing expansion of the space. Using expressions 

similar to expression 2.1, equation 2.2 becomes 

= -e(Ox + Gy + Og) dx dy dz . (2.3) 

The total work done by all the internal forces between all the points of 

the entire equivalent structure is 

Vi = -e /y (0% + Gy + Og) dx dy dz , (2.4) 
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or, with a change of variables. 

Vi = -e / (cjy. + ay + az)dV, (2.5) 

where V is the volume of the structure. 

In the derivation of equation 2.5, body forces were assumed to be non­

existent. If there are body forces present, they give rise to terms in 

equation 2.5 which are similar to those presently to be derived for the 

work done by the external forces. Consequently, the body forces, if pres­

ent, may be assumed to be part of the load system 

Now consider the work done by the system of loads, F̂ , during the 

dilatation. A single force of the system is shown in Fig. 2.3. Such a 

force can be represented by its three components X̂ , and parallel to 

the X, y and z axes respectively. 

For computational convenience assume that the origin is so selected 

that it does not move during the dilatation. Then the displacements of i, 

the point at which Fj_ acts, in the x, y and z directions are exj_, eŷ  and 

eẑ , respectively. 

Thus, the work done by the single force, F̂ , during the dilatation is 

Xj_exj_ + Yĵ eŷ  ̂ + Zeẑ  

or. e fê Xi + Ŷ yi + , 

and the total work done by the external system of forces, Vg, is 

Ve = l e  { Xj_Xi + Ŷ ŷ  + Ẑ ẑ  } (2.6) 

(2.7) 
i 
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X 

a. Force, F̂ . b. Components of force, F̂ . 

Fig. 2.3. Single force of the F̂  system. 
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Either equation 2.6 or 2.7 can be used as convenience dictates when 

actual computations are to be made. For computational ease, equation 2.7 

can also be expressed as 

Vg = le Fi r̂  cos 8 (2.8) 

where Fj_ and r̂  are the scalar magnitudes of the vectors F̂  and r̂ , (r̂  is 

the radial distance between the origin and point i), and 9 is the angle 

between the two vectors. 

It can easily be shown that F̂ .r̂  is positive for all forces directed 

away from the origin and negative for a,ill forces directed towards the 

origin regardless of their position in space. 

Equating to zero the sum of the right-hand sides of equations 2.5 and 

2.7, and rearranging, 

/ (e 0̂  + e Oy + e dV = I e F̂ .r\ (2.9) 

or, cancelling the constant e 

( 0% + Gy + ) dV = I  F̂ .P̂ , 
V 1 

or 
/ a dV + / 3 dV + / a dV = I F..r, (2.10) 
V V V i 

Equation 2.10 is the mathematical expression of a new theorem pro­

posed here for the first time. The theorem will be called the "Theorem of 

Zero Absolute Potential Energy" for reasons to be discussed after a dis­

cussion of the general validity of expression 2.10. 

General validity of the theorem 

The mathematical derivation of the theorem required four assumptions: 

1. that the system is in external and internal equilibrium 
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2. that a constant dilatation of the space takes place, 

t?iat the forces remain constant, and 

4. that the dilatation is an adiabatic process. 

Assumptions 2 and 3 are consistent with assumption 1, the preservation of 

equilibrium, as was shown in the derivation. Neither of ass"Uinptions 2 and 

3 place any restrictions on the applicability of the theorem. The dilata­

tion was merely a device to derive the theorem. The validity of the 

theorem does not depend on the dilatation. In assumption k the term adia­

batic is used advisedly because the requirement is that no energy enter or 

leave the total system during the dilatation. Thus, aH four assumptions 

reduce to a single one, the preservation of statical equilibrium, as the 

only condition that must be met for equation 2.10 to be valid. The mathe­

matical statement of the theorem is derived in the appendix directly from 

the equations of equilibrium and without any other assumptions. Equation 

2.10 is considered to be a different statement of but equivalent to the 

equations of equilibrium. 

Since a + a + a is a constant for any point and invariant 
X y z 

with respect to the coordinate system chosen, it follows that the left 

hand side of the equation is invariant with respect to the axes or origin 

chosen. Obviously the same is true for can be quickly veri­

fied by computation of iFi-̂ x, with respect to different origins, for 

any conveniently sizzle system of loads in equilibrium. This invariancy 

of each of the two sides of equation 2.10 can be used to computational 

advantage since, if convenient, different origins and coordinate systems 

may be chosen for their separate evaluation. Furthermore, if convenient, 
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the structure may be subdivided into several segments and the terms compu­

ted by using a different coordinate system for each segment. In such a case 

the equation could be rewritten as 

I ^ ^ ^ = I  h - h  (2-^' 

where the integrations are to be carried over each element, j, of the n 

elements of ûhe structure. For computation of I P̂ .r̂  different origins 

can be used for each set of loads which is by itself in equilibrium (as for 

example one for all the vertical force components and another for the hori­

zontal force components). 

Conceptual Physical Meaning of the Theorem 

General 

The mathematical expression of the theorem (equation 2.10) has an 

interesting form in which the terms involved have units of work, or more 

generally, of energy. The eeirliest uses of energy principles in structural 

engineering, in the form of the principle of virtual work, can be traced 

back to Jean Bernoulli. But Charlton (9) reported that it was also used 

implicitly by Jordanus de STemore in the thirteenth century. Energy prin­

ciples have been, in one form or another, the starting points for the 

solution of an innumerable host of inroortant structural and mechanical 

problems. A good historical review of energy principles in elastonechanics 

is given by Gunhard AE. Oravas in the introduction to a recent, translated 

edition of Castigliano's principal work (Castigliano (8)). The physical 

significance of many of these theorems is sometimes not well defined, and 

sometimes no physical meaning can be ascribed to their indisputably correct 
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mathematical definition, Ix is well known, for example, that complemen­

tary energy has no physical meaning (even though in the case of linearly 

elastic structures it is mathematical 1 y but not conceptually equivalent to 

internal work). Keal (22) reported that the exact nature of the principle 

of virtual work itself is subject to debate, and he considered its usually 

given physical meaning as an aid to memory. Thus, it is not uncommon that 

a useful and correct mathematical expression is found first, and its mean­

ing, in physical terms, is sought only after its derivation. Such concep­

tualization is most useful as it usually reveals remarkable similarities 

among until then unrelated phenomena and thus permits advances to be made 

in one field of knowledge by analogy with another. This section will 

develop a conceptual physical meaning of equation 2.10 and thus explain 

the reason for the title chosen for it. 

Zero absolute potential energy 

All the terms of equation 2.10 have units of energy. Conceptually 

then, they can be considered to be a measure of some kind of energy. 

This energy will be given the name of "absolute potential energy". The 

ûotal absolute potential energy of the system is composed of that of the 

structure and that of the system of loads. If is used to denote this 

total absolute potential energy of the system, then 

â = / a- dV -i- / a2 dV -f / C3 dV - I > 

and, if the system is in static equilibrium, 

Ùa s 0 . 

It is this last equality that expresses what is considered to be the con­

ceptual physical significance of the theorem which can be stated as 

follows. 
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THEOKEM: The absolute potential energy of a structure-load. 

system in Internal and external static equilibrium is 

always zero. 

The word absolute is used to distinguish this conception of potential 

energy from its more common meaning. For the structure, it is not a 

measure of energy stored through deformation but rather can be thought of 

as the energy equivalent of the stressed material itself. For the forces, 

the potential energy is referred to a single point, the origin selected, 

and with respect to the selection of which such absolute potential energy 

is invariant. 

Observations with respect to shear 

An interesting feature of equation 2.10 is that it does not include 

any terms with units of energy arising out of shear stresses. A possible 

explanation may be found in the observation that a shear stress pattern 

can always be expressed in terms of the corresponding normal principal 

stresses at the point. In addition, it is interesting to reflect on the 

fact that although shear stresses cannot exist without normal stresses on 

some other plane through the same point, the reverse is possible. Thus, 

it may be hypothesized that in general the shear pattern is dependent on 

the normal stress pattern which is in turn dictated by the system of loads 

on the structure. Conceptually then, shear stresses may be regarded as 

arising out of a geometric deficiency of the structure that prevents the 

structure from supporting the loads by purely normal stresses. In that 

case, shear must arise to preserve internal equilibrium and to "bend" the 

stress trajectories. It could then be expected that shear stressed struc­
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tures are less efficient than structures which support the load system 

purely by normal stresses. 

Shear stresses must be present whenever 1 F̂ .r̂  is zero by itself 

since then, at some point in the body, at least one of the stresses 

( â 5 Oy or Gj) i-C. the left hand side of equation 2.10 must be of a 

different sign than the others for the equation to apply. When I F̂ .r̂  

is not zero and an all compression or an all tension structure is possible, 

equation 2.10 is sufficient to uniquely determine the volume, given the 

stress pattern (assuming, for example, a fully stressed structure). When 

 ̂ŷ .r.: is zero, however, equation 2.10, although valid, is not sufficient 

to uniquely determine the volume (given the stresses) since both sides of 

the equation are separately equal to zero. It is then necessary to know 

more about its geometry. 

Michell structures can be thought of as shear structures (skeleton 

flexural or torsional structures) where, for efficiency, the material has 

been concentrated along the lines of principal stress trajectories. It is 

thus not surprising that to find a Michell structural layout is primarily 

a geometric exercise which is equivalent to determining the geometry of 

the principal stress trajectories to carry the loads. This seems to ex­

plain the possibility of existence of several Michell structures for the 

same system of loads, some more efficient than the others in accordance 

with the relative efficiency of the respective stress trajectories. 

Derivation of î>îaxwell, Michell and Templeman's Results 

Since the theorem is general]y applicable, it should be possible to 

derive yiaxwell's theorem, the Michell conditions and Templeman's results 
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from it. This will be done forthwith. 

Derivation of Lfaxwell's theorem 

Consider a generalized framework of n bars, which is loaded by a sys­

tem of m loads (F\). If the system is in equilibrium, equation 2.11, re­

written for convenience, applies directly to yield: 
n m _ 
y f / a dV. + / a dV. + / a dV. ] = T F..r. 
^  ^  1  X  J  i y J  z  J  J  ^ i x  
j=l i=l 

For each bar, j, select a coordinate system such that the x axis runs 

along the centerline of the bar. In such a case, assuming constant dis­

tribution of stress throughout the cross section, 

= ÏÈI or rr I = - 2c| 

and 

A Ij °x'j A Ij ' 

dV̂ . = Aj d2j, ° y  ~  Cz = 0 

(2.12) 

where d£̂ . is the differential element of length, and all other symbols 

are as previously defined. 

Substituting equations 2.12 into 2.11, the result is 

k n Tj, n 

{ -J -4 "'a ) = 

where for convenience the k tension members and the n-k congre s sion num­

bers have been collected under the appropriate summation signs. 

Simplifying and integrating. 

=  I  h - h  (2-") 
t ci 

Equation 2.13 is the mathematical statement of Maxwell's theorem as 

can be determined by comparison with equation 1.1. 
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Derivation of Michel! conditions 

Having derived Maxwell's theorem from, the theorem herein presented, 

it is obvious that it is possible now to proceed in exactly the same manner 

as Michel 1, and as outlined in chapter one, to develop his conditions for 

minimum volume of a structure. 

Dérivât'' of Templeman* s results 

Assume that a structure is under static equilibrium in the face of 

an external system of loads also in static equilibrium. Assume further 

that such a structure is composed of uniaxially stressed elements and bi-

axially stressed sheets. For clarity refer to Fig. 2 . h  where a typical 

structure suggested by Ten̂ leman is shown. The structure shown in the 

illustration is planar, as aU of Templeman' s exan̂ les were, but it is 

emphasized that the derivation to be made here, using equation 2.11, need 

not be restricted to planar structures and would apply as well to three-

dimensional structures such as a shell. In all the planar structures of 

Templeman, since the sheet is to be uniformly stressed in all directions, 

the uniaxially stressed members must always be arcs of circles. 

Rewriting equation 2.11 for convenience, 
n m 
I ( / o* dVj + / ay dVj + / Oz ) = I 

3=1 ^ ^ ^ i=l 

Imagine now the generalized structure to be divided into k  uniaxially 

stressed members and n-k sheets under biaxial stresses. Equation 2.11 can 

then be written as 
k m  

I f  O; dVj + I ( ; O, aVj + I  O y  iVj ) = J (2.14) 
j=l " •' i=l 
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t 

Fig. 2 . k .  'îypical Templeman structure. 
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where it is inplied, by the appearance of the first term that coordinates 

will be chosen for its integration so that 

= 0 -

Such a coordinate system could be curvilinear, and for the typical struc­

ture shown in Fig. 2,k the origin would be at the centers of the circular 

arcs. It is eniphasized that this is done strictly for convenience and is 

not a prerequisite to the validity of the equation. A Cartesian coordi­

nate system could also be employed in which case and Oy would be the 

X and y coniponents of while = 0. In such a case, dVj would also 

have to be expressed in terms of the same Cartesian coordinate system. 

Thus, it is the convenience of expression of dV. that is being considered 
0 

in the selection of the coordinate system, and not necessarily colinearity 

with the stresses. 

For least volume, Templeman assumed that, if maximim shear strength 

is the criterion of failure, and if the stresses in the sheet are of like 

sign, then the least volume of the structure is obtained when all the 

stresses are constant and equal to the maximum allowable stress f̂  or f̂ . 

Note that, if the sheet is in tension, so must be the arched members and 

vice-versa. Therefore, in equation 2.l4 replacing Oy and by f, 

and, dividing throughout by f, the result is 

k n 

I / dV. + I ( / dV. + / dV. ] = I Z F  . r  .  (2.15) 
j=l J  ̂ j=k+l i  ̂ j  ̂  ̂i=l 1 1 

But noting that / dV. = V., and that the elements 1 to k are the uni-
j J J 

axially stressed and the k+1 to n are the biaxial 1 y stressed, equation 

2.15 can be written in the equivalent form 
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U I 
V + 2V 

0 

I pi-i 
(2.16) 

where denotes the volume of the uniaxially stressed members of the 

structure and V̂ , as before, the volume of the biaxial 1 y stressed sheets. 

Or 

V 
T 

1 Ï  F̂ .rj, - (2.17) 
1 

for which use is made of the identity 

H- v° 
T 

where is the total volume of the structure. 

Equation 2.17 is Templeman's assertaticn here proven in a more rig­

orous manner. His other assertions with respect to fully biaxially or 

fully triaxially loaded structures (see equations 1.9 and I.IO) could be 

derived just as rigorously. 

The theorem is so general that the full range of problems where it 

%fill be useful can be neither predicted nor foreseen at this time. Con­

ceptually, equation 2.10 could be used to develop the general conditions 

to be fulfilled for minimum volume structures, to develop the optimum 

form for a particular structure, to test statical equilibrium, and so on. 

In this dissertation the theorem vri.ll be used to develop the least 

volume conditions leading up to a hierarchy of structures according to 

structural efficiency, and it will also be used in several sample struc­

tural optimization problems. 

Interestingly, in some of the examples dealing with open-top shell 

domes, equation 2.10 was found not to apply in the first try. A re-

Applications and Significance of Theorem 
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examination of the statical equilibrium of those problems disclosed that 

those particular shells would not be in equilibrium under the assumed 

stress distribution and that either localized bending would have to be in­

cluded in the computation of equation 2.10, or that a stiffening ring 

would have to be applied. To preclude bending the stiffening rings were 

applied and in every case equation 2.10 could then be shown to apply 

identically, thus illustrating a possible use of the equation in checking 

the correctness of assumed stress patterns as suggested in the previous 

paragraph. 

Significance as pertains to least volume 

Equation 2.11 is rewritten for convenience, 

I [ ! OjdV + / OgdV + / CgdV ) = I Fi-Pi (2.18) 

where â , Cy. and have been replaced by qj ? Cg and Og to 

indicate that the coordinate system used for each element may be local 

instead of global. 

It is obvious, observing equation 2.l8, that for any single value 

of I ̂ i-̂ i zero (and of course for a given system of loads), the 

absolute minimum volume will be obtained when Oj , O2 and Og are all 

of the same sign and numerically as large as allowable everywhere 

throughout the structure, if such is possible. In that case, if f is 

the allowable stress for the material when stressed triaxially. 

= — Ï F-.?-. (2.19) 
3f  ̂ 1 

Equation 2-19 was, as mentioned before, first proposed by Templeman 

(36). Since equation 2.19 was derived from equation 2.18 which applies 
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to hyperstatic as well as to static structures, this is considered to be a 

mathematical proof, heretofore considered so elusive as discussed in the 

Strength designs section of chapter one (see also Bamett (2)), of the con­

cept that the fully stressed structure, static or hyper static, is the least 

volume structure for a single system of loads. Equations similar to 

equation 2.19 can be written for the two and one dimensional stress states 

by letting = o or e o respectively. Then, 

and, = 1 I F..r. (2.21) 
iDin f  ̂  ̂

where f, in each case, is the maximum allowable stress for the stress 

state existing in the structure. Coiroaring these last three equations it 

c' be seen that, for generally comparable systems of loads, a triaxially, 

fully and homogeneously stressed structure would have a lesser volume than 

a uniaxially stressed structure, assuming of course that such structures 

are possible for the given loads. Here the term "homogeneously stressed" 

is used to denote that all stresses in the structure are tensile, or 

that all are compressive. 

Continuing to assume that I F̂ .r̂  is not zero, it can be shown that 

structures which are not homogeneously stressed will have lesser efficien­

cy than the corresponding homogeneously stressed structures. That this is 

so for uniaxially loaded structures was shown by Owen (25) as discussed in 

chapter one. For biaxially loaded structiires, when  ̂F̂ .r̂  is not zero 

it is not possible for the structure to be fully stressed everywhere with 

stresses of different signs since if this were so the left side of equa­

tion 2.18 would vanish. Thus, assume that ci is everywhere equal to the 
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maximum allowable stress. Assume further that Og bas some value, variable' 

if desired, but less than the allowable and everywhere of different sign 

than . For biaxially stressed cases, 

/ dV + / 02 dV = I 

ffow replace cr̂  by its known value, f, and O2 OY -5̂  where  ̂is the 

absolute numerical value of O2. This yields, 

f V - / Ço <3-V = y F..r. 

and 
V = 1 i î'i-̂ i + / 2̂ dV. (2.22) 

Comparing equation 2.22 with equation 2.20, it can be seen that the homoge-

nously stressed structure again results in a lesser volume. For a tri-

axially stressed structure, it could be shown, by a similar procedure, 

that the homogeneously stressed structure has lesser volume. Further­

more, in the case of a triaxially loaded structure, if it is possible to 

have the structure fully stressed everywhere but with one stress component 

of different signs than the others, then 

- / SidV 4- / C2âV + / ÇgdV = I F\.r\ 

But, since the structure is fully stressed, ~ ?2 ~ 3̂ ~ f, 

and the first two terms cancel out, leaving 

/ ;̂ dV = I F̂ .r̂  

1 _ _ 
V = I I F^.rz. 

Therefore such structure would not be any better than a uniaxially stressed 

structure (assuming that the allowable stresses, f, and the systems of 

loads are comparable). 
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The above comments are predicated on I ̂ i'̂ i being zero. 

Should I .rbe zero, barring the trivial case when the forces are con­

current on a point or on a line (in which case no structure is necessary 

to preserve equilibrium and = O), then homogeneously stressed struc­

tures are not possible. As discussed earlier in the observations with 

regard to shear stresses, when  ̂F̂ .r\ is zero, the forces are either 

parallel or couples. In that case shear must be present in a biaxially or 

a triaxially stressed structure, and at least some portion of the struc­

ture must have one stress of different sign than the others for the left 

hand side of equation 2.18 to be zero. These structures will be referred 

to as of a "mixed state of stress." Uhiaxially, biaxially and triaxially 

stressed structures in a mixed state of stress will be separately con­

sidered. 

Uhiaxially stressed structures in a mixed stress state can be fully 

stressed. In that case, if f̂  and f̂  are the same, the total volme of 

the tension members will be the same as the total volume of the compres­

sive members. For minimum volume such structures would be Michell struc­

tures. It will be shown in a later section that if the geometric restric­

tions (that make the use of a Michell structure mandatory if least volume 

is to be achieved) are relaxed, then it is sometimes possible to decrease 

the volume. Thus, Michell structures are not considered as efficient as 

those in which it is possible to have a homogeneously stressed structure. 

Biaxially stressed structures in a mixed state of stress may also 

be fully stressed. This cor refonds to a structure in which the entire 

structure has stresses of different signs in two orthogonal directions at 
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each point. An example of this would he a hyperbolic-paraboloidal shell. 

For this case equation 2.l8 is insufficient to assess the structurels rel­

ative merits with reject to homogeneously stressed structures. However, 

since uniaxial 1 y stressed Michel 1 structures (in a mixed state of stress) 

can sometimes be shown to be less efficient than homogeneous structures if 

the geometry constraints are relaxed, it is presumed, intuitively that, if 

geometry is relaxed, it may also be possible to reduce the volume of a bi­

axial, mixed, and fully stressed structure by replacing it with a fully 

and homogeneously stressed structure. 

Triaxially stressed structures may not be fully stressed if 

% zero. When  ̂̂ i*% zero, the requirement that the left 

hand side of equation 2.18 vanish makes it imperative that if one of the 

stresses, say , is everywhere equal to its maximum allowable value, 

then the other two must be of a different sign and less than their maxi­

mum allowable value. (This again seems to confirm, as discussed earlier, 

that no Michell strain fields exist in three-dimensions.) Structures of 

this type do not utilize the material to iys full capabilities and must 

be considered less efficient than triaxially stressed structures in a 

mixed state of stress when % is not zero since in this latter case 

it is conceptually possible to fully stress the material in all directions. 

Beams, and other flexural members in a biaxial state of stress are 

special cases of mixed stressed structures, generally with  ̂̂ i'̂ i ~ 

in which it is not possible, in practical cases, to achieve the allowable 

stress everywhere for either or ô , These structures must be con­

sidered the least efficient of all mixed stress state structures with 
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Hierarchy of structures 

The discussion of the preceding section can be summarized in an 

ordered hierarchy of class levels of increasing efficiency (or decreasing 

voltane) according to the state of stress existing throughout the struc­

ture. 

The possibility of devising some such classification -was suggested 

by Otto (23) who published a chart in which the structural forms were 

classed with respect to the type of action (bending, tension, compress­

ion) used to support the loads. In the same chart he indicated, engiri-

cally, whether more or less material is required in their execution. 

A hierarchy of structures based on the previous section appears in 

Fig. 2.5 where only the most efficient member of each stress state condi­

tion is shown. The symbol + (or -) is used therein to signify that the 

particular stress is everyifhere equal to the ]nayiallowable stress in 

tension (or compression). It is certainly not implied that it is possi­

ble to design a structure to fit a specific stress condition for any 

given system of loads. Indeed, it is expected that in general the sys­

tem of loads must be somewhat changed to substitute a design of a gener­

ally more efficient level for one of another level, if such substitution 

is possible. 

Two additional points to be kept in mind when looking at the hier­

archical levels of Fig. 2.5 are: 

1. All structures are actually three-dimensional and consequently 

the lines that separate one structural level from another cannot be 
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I #0 I F̂ .r̂  = 0 

Stress Statê  , Stress State 
a. j Structiiral Examples 

g' 
Z  
•H 
O  

I 0 0 Beams, rigid frames 

: (+) (-) 0 Plates 

[(=) 0 0 j Trusses (plane & spatial) 
xattices 

-  - I  '  O TO. ' + (-) 0 ! Shells 
I 

I I (•*") ( + ) - Solids massive enough to war-
 ̂ rant 3-àimensional elasticity 

jt X 0 0 Michell structures 

dl- + 0 0 ! Trusses, lattices, arches, 
u ' cables and nets 

Ë • i 
" i -r - 0 Shells (hyperbolic paraboloid) 
+ Jl 
III -r -r 0 ' Shells, membranes 

IV -r -r + j Solids (trivial), fluids 

"•At each level a second stress state has aj._L signs reversea. 

) means that the particular stress is not everywhere equal to the 
maximum allowable for the stress condition of the level. 

implies that some parts of the structure, or some members, are in 
tension and some are in compression, but all are uni&xially stressed. 

Ẑhe ordering of level I stress states is not assured. 

®The horizontal line indicates that the stress state of T = 0 
above the line, carjiot be more efficient than the corresponding 
stress state of J Fi.ri f 0 below the line. 

Fig. 2.5* Hierarchical structural class levels. 
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clearly draviH. Thus, a structure can be more clearly ascribed to one 

level rather than another the more exactly it fulfills the requirement of 

that level. 

2. In moving towards the more efficient levels, often more of the 

loads are passed to the supports (or are passed to them more efficiently). 

Thus, it cannot be generally said that any one level is superior to a 

preceding level in a true economic sense. It can only be said that 

structures of the higher levels (exclusive of supports) are lighter than 

those of preceding levels when supporting comparable load systems. 

!Ihe hierarchy of structures shown may not include every possible 

case. However, it can be used to state three general guidelines: 

1. Fully stressed structures are more efficient (provide lesser 

volume) than comparable not fully stressed structures. 

2. Structures in homogeneous states of stress are more efficient 

than comparable structures in mixed states of stress. 

3. Triaxially and homogeneously stressed structures are more effi­

cient than conroarable biaxial 1 y stressed structures which in turn are 

more efficient than comparable uniaxial 1 y stressed structures. 

Significance as pertains to hyperstatic structures 

The applicability of the theorem is not restricted with respect to 

the degree of redundancy of a structure. It applies to hyperstatic as 

vrell as to static structures. Consequently, the theorem indicates that, 

if all parts of the structure are fully stressed, then the volume re­

quired to support a given system of loads is the same for a hyperstatic 

or a static structure. (This was noted (in chapter one) to be the case 
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for the Maxwell structures of Fig. 1.1). The theorem further indicates 

quite generally that the least volume stmcture, optimized for a single 

load system, is a fully stressed structure (static or hyperstatic). The 

actual volume required depends on the intensity and geometry of the loads 

( I and on the allowable stress in the material. 

Since equation 2.10 applies to the loaded structure, the geometry 

used should also be that of the structure under load. Consequently, upon 

removal of the loads, there will generally be residual stresses in hyper­

static structures due to lack of fit of the unstressed elements of the 

structure. However, when subjected to the design loads, such structures 

will be cozgatible and fully stressed. Such geometrical prestressing, 

using the geometry of the loaded structure in the design process, is 

similar to the reverse deformation method advanced by Rozvani (29), and 

to the load balancing method of T. Y. Lin (l7). 

Concept of optimization by variation of I 

As discussed in chapter one, the loads and the structural form are 

interrelated, a change in one implying a change in the other. Thus, it 

is most logical to assume that the locations of the loads may be varied 

in some permissible fashion (say along their lines of action), and the 

reactions may be allowed to vary in magnitude as well as orientation so 

as to preserve equilibrium, in order to optimize or reduce the volume 

of the structure. It must be pointed out that in general this makes it 

necessary for the supports to be resistant to horizontal thrust as well 

as vertical loads. This is not considered a major drawback of the con­
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cept. If a tension, ring is used, and it is desired to consider its volume 

as well, the method can be modified to do so. How this can be done is 

discussed in chapter three. 

The minimization process can be conceived as being composed of two 

generalized steps. First, a topological optimization is made transform­

ing the structure from one class to a more efficient class, and second, a 

geometrical optimization is made within the second class. 

For illustration, consider a Michel 1 structure as shown in Fig. 2.6 

(radial members are omitted from the sketch for clarity). Then, assume 

that it is now permissible to raise the load and force it to act on the 

structure at a higher point as shown in Fig. 2.7. According to Cox (lO), 

the volumes of the two structures are identically the same, a curious 

feature of such Michell structures. Note however, that for the structure 

with the raised load, % F̂ .Z\ is no longer equal to zero. Thus, except 

for the parallelism of the forces (according to equation 2,10, or from 

Maxwell's theorem) the least volume structure, since 1 F̂ .r̂  is nega­

tive, would be one devoid of tension members, i.e. an all compression 

structure. It is only necessary to relax the geometrical conditions on 

the loads (supports) at A and B in Fig. 2.7 and allow them to rotate. 

Then the minimum volume structure would be a two strut structure as shown 

in Fig- 2.8. 3j expressing  ̂F̂ .r̂  in terms of this new load system 

the structural form transformation is effected. The volume of this new 

structure will be less than that of the original Michell stru.cture pro­

vided that the rotation of the support reactions does not unduly numeri­

cally increase  ̂Fj_.f̂ . The numerical value of  ̂F<.r̂  should be 
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Fig. 2.6. Michell structTire 
with I Fi.î  = 0 

Fig. 2.8. Modified structure . 
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minimized by suitably selecting h. Such a minimization of  ̂ will 

not result in a return to  ̂̂i*̂ i ~ 0 if % ̂ i'̂ i been properly 

expressed. That this is so mil be presently shown mathematically. 

The volume of the Michell structures of Fig. 2.6 and of Fig. 2.7 can 

be cocrputed to be (as shown for example by Cox (lO)), if f̂  = -fg = f; 

V = 7(1 + |-) 1|- (2.23) 

Solving for X in terms of P and h, the value of  ̂̂i'̂ i com­

puted, for the structure of Fig. 2.8, as 

- I Fi-r. .= PL + h ] (2.24) 
 ̂ 4h 

Setting the first partial derivative of  ̂F̂ .r̂  with respect to h 

equal to zero, the minimum numerical value of I î'̂ i can be shown to 

occur when h is equal to L/2. 

Substituting this value in equation 2.2%̂  and making use of equation 

2.11, or of Ifexwell's theorem, the volume of the new all compression struc­

ture of Fig. 2.8 can be computed as 

V = i PL (2.25) 

Comparison of equation 2.25 with 2.23 shows that the volume of this 

structure is about 4/5 that of the Michell structure. If the absolute 

value of the maximum allowable tensile stress is greater than that of the 

compressive stress, then a lowering of the load would still yield a lesser 

volume for the modified structure than for the Michell structure. 

A plot of equation 2.24 is shown in Fig. 2.9. It is easy to see 

that it is not possible to return to iF̂ .r̂  = 0 since no homogeneosly 

stressed structure is possible then. As h approaches zero, I ̂ i-̂ i 
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TENSION 

COMPRESSION 

Fig. 2.9. Plot of I 
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aproaches ±<» . 

Several investigators such as Cox (10), Owen (25)» and Templeinan (36) 

have similarly noted that the volume of structures can sometimes be re­

duced by adding loads (hence changing  ̂̂ i-̂ i)* Owen, who also consid­

ered the two strut structure of Fig. 2.8 and noted its greater efficiency 

than the corresponding Michell structure, also used this method of varia— 

ting  ̂F̂ .r̂  to investigate the most efficient sag-to-span ratio of 

suspension bridges. 

It is not entirely clear under what general conditions (if such 

exist) this result is attainable. Conceptually and physically, the rais­

ing of the load in going from the structure of Fig. 2.6 to that of Fig. 

2.7 is equivalent to allowing an increase in the volume of the compression 

members and an exactly equal decrease in the tension members (so that 

the total volume is not changed), while at the same time allowing % F̂ .r̂  

"CO vary in such a way as to maintain the equality of equation 2.11. 

Conceptually, and, less clearly physically, the rotation of the reactions 

corresponds to a continuing decrease of the tension volume, accompanied by 

a lesser increase in the compression volume, until the tension volume 

vanishes. 

Although attempted, it was not possible to prove conclusively in this 

dissertation that this second variation is always possible, or under what 

geometrical conditions it is possible. If such a modification is physi­

cally possible within the same general class of structure so that the 

systems of loads remain comparable, then, obviously the volume of the 

final, homogeneously and fully stressed structure (all tension or all 
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compression) -will be less than that of the original mixed-stressed 

(tension and coiapression) structure. 

If the lEodification is possible only by a transformation of the 

structure to a different class, then the system of loads on the new class 

may not be comparable to that of the first. Consequently the volume of 

the new class structure will be less only if  ̂F̂ .r̂  has not been un­

duly increased to force the new class of structures to apply. This will 

be illustrated in the third alternative design of the sequence of examples 

in chapter five, and will be discussed in the section on Comparison of 

volumes of that chapter. 
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CHAPTER THREE - METHODOLOGY FOR SOME OPTIMAL 
STRUCTURAL DESIGN PROBLiMS 

General 

Loads 

This chapter will outline a general methodology which can be used 

(with the theorem developed in chapter two) in optimal synthesis of three-

dimensional structures. The specific methodology to be developed will be 

applicable to structures which must support vertical loads, but in which 

the vertical loads may be raised to any point above the level of the 

supports. This type of load system arises in many practical cases such 

as roofs. In those cases, the primary loads usually are vertical (con­

centrated or distributed live load and distributed dead load); while the 

secondary live loads may or may not be vertical (a man walking on the 

roof, wind loads). For some structures, of course, wind loads may be 

just as severe or more severe compared to other loads. But since they 

are variable, they do not constitute a single system of loads and the 

method to be developed will not then be applicable. Furthermore, since 

the wind loads are more or less infrequently applied, it does not seem 

justifiable, except in rare cases, to optimize a structure with respect 

to a single specific wind load. For roofs of dome shape, Benjamin (3) 

considered the self load and the snow loads to be the primary loads in 

the preliminary design. Having considered the snow loads as primary 

loads, the other live loads were ignored. Finally, the preliminary 

design was modified by accommodating the additional wind load effects. 
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General forms of structures 

As discussed in chapter two, least volume structures are homogenous-

iy and fully stressed. 

The only frameworks that can be homogeneously stressed under the 

loads to be considered are lattices or tension nets of cables, if the sup­

ports are allowed to absorb the thrusts of the structure. As will be seen 

in the illustrative examples of chapter four, the minimization process re­

sults in structural shapes of high rise (or sag) -to-span ratios. It is 

difficult to provide sufficient rigidity to high sag tension structures. 

Because of 3his, and because of the desirability to have some rigidity in 

the structure against loads other than the ones for which it was optimized, 

only compression structures will be given further consideration. 

Parenthetically, it should be noted that shallow and very rigid all 

tension structures are possible (not considering the supporting compres­

sion ring) by draping cables into nets describing an anticlastic surface; 

or into two surfaces of opposite curvature and joined by short vertical 

cables. Such nets, however, are kept in tension under load by hî  pre-

stressing forces. Under load, the tensile stress in one of the two sets 

of cables is decreased, thus this set can really be considered to act as 

a set of compression members (Zetlin (Ul)). If the large prestressing 

forces are included as part of the load system, then % F̂ .r̂  becomes 

positive as it should be for an all tension structure. Whether or not 

such a net of cables, excluding the compression ring, is of lesser volume 

than the structures obtained by the methods advanced in this dissertation 

depends on the relative magnitudes of the respective  ̂F̂ .r̂ . For 
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the cahle supported roofs being considered, the prestressing forces must be 

hî  and consequently  ̂̂ i-̂ i vill probably be higher than for a compara­

ble compression structure. Thus, tension nets will not be considered any 

further. 

Application of the Theorem_and the 
Concept of Variable % F̂ .r̂  

Generalized formulation 

The generalized loading system used in this dissertation is shown in 

Fig. 3-1. The optimization problem to be solved can be defined as follows. 

Find the vertical coordinates, ẑ , for a specific lattice or shell, which, 

when loaded with the system of loads, P̂ , results in the least volume lat­

tice or shell. Mathematically, this is a programming problem where the 

objective function is 

Îmin ~ s(&i)lmin (3-1) 

to be minimized subject to three sets of constraints; 

statical equilibrium, h(Fj_, r̂ ,̂ Q̂ , il̂ , = 0 ; (3.2) 

geometry and stresses, f) = 0 ; (3.3) 

and, compatibility of deformations, p(Qi> 04.» î) = 0 . (3-̂ ) 

The objective function, equation 3.1, is normally one of geometry with 

variables in iû, , such as the areas and lengths of the members in the 

case of lattices, or with thicknesses and differential elements of length 

or area in the case of shells. 

The constraints similar to equation 3-2 include all the equations of 

equilibrium of all parts of the structure, and, generally, include such 
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X 
•J 

Fig. 3.1. Loading system used. 



www.manaraa.com

53 

variables as all the forces in the system (internal, , and external, F̂ ) 

and the necessary geometric variables such as lengths, , r, and angles. 

The constraints similar to equation 3-3 are needed to relate the geo­

metric variables of the objective function to those of the constraints of 

equilibrium. Therefore, these constraints will generally include those of 

the objective function and those of the equilibrium conditions, as well as 

other variables such as stresses, , and the allowable stresses, f, 

(usually constant) in the structure. 

For statically determinate structures, only the objective function 

and the first two sets of constraints are sufficient to arrive at a so­

lution. In such structures (determinate) the compatibility constraints 

are automatically satisfied. However, in the case of indeterminate 

structures, the compatibility constraints (similar to equation 3.4 and 

which introduce additional variables, i.e. structural deformations and 

displacements, 6̂ ) must be used in conjunction with the others to 

arrive at a unique solution. 

Other side constraints, such as buckling, may be part of a specific 

problem. Such side constraints are not included in the set of constraints 

since the method to be developed is a strength design method, and, as 

discussed in chapter one, optimization in such a case is normally obtained 

with respect to only strength constraints. 
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Use of theorem of zero absolute potential energy 

By the use of the theorem, when the structure is fully and homo­

geneously stressed, it is possible to replace the objective function by 

a new equivalent objective function, 

"Un' <3-5) 

It is noted that this new objective function is expressed only in 

terms of forces and the necessary geometric variables. These are the same 

variables appearing in constraints 3.2. 

With this substitute objective function the programming problem is 

often considerably simplified. 

Simplifications due to the use of the theorem 

As discussed in chapter two, the minimum volume structure will be a 

fully and homogeneously stressed structure (i.e. all members everywhere 

stressed to the maximum allowable stress in compression, or all in ten­

sion). Assuming such a stress pattern to apply will in some cases reduce 

a statically determinate structure to a mechanism (for purposes of design 

computations), or a statically indeterminate structure to a determinate 

one. However, since the geometry is undefined during the optimization 

process, this simplification is not always assured and depends on the 

specific problem being considered. 

As shown in Fig. 3.1, the system of loads, F̂ , include the applied 

loads, Pj_, and the reactions, Xj and Zj. The reactions are dependent on 

the applied loads and on the geometry of the structure. In the case of 

structures which can be made statically determinate for design purposes. 
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as well as in the case of statically determinate ones, it is possible to 

relate these loads with only the statical equilibrium set of constraints 

(equations 3.2). When the structure is indeterminate, however, they 

cannot be related without making use of the compatibility constraints 

(equations 3-̂ ) which, in turn, require the consideration of the geometry 

constraints similar to equations 3*3. 

In the optimization of the substitute objective function, it is suf­

ficient to consider only those constraints which are necessary to relate 

Xj, Zj and . Thus, in many cases the optimization process is consider­

ably reduced since only the constraints of statical equilibrium (equa­

tions 3.2) need be considered. The number of variables involved is also 

greatly reduced. 

For a final design the constraints of geometry similar to equation 

3.3 will eventually have to be used, but only after the optimum general 

geometry has been determined in the optimization process. Thus, the use 

of the theorem, coupled with the concept of variation of 1 F̂ .r̂  (see 

the last section of chapter two), results in two distinct advantages when 

the structure is reducible to a statically determinate one. These aidvan-

tages are that, 

1. the programming problem is considerably sinçlified by a reduction of 

the constraints that must be satisfied, and 

2. a detailed design of all parts of the structure need not be con­

sidered until after the programming problem is solved. 

The method is limited to the consideration of a single system of 

loads. Conceptually it appears, however, that it may be possible to 
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modify the objective function so that multiple systems of loads can be con­

sidered. It also seems that it may be possible, from a mathematical point 

of view, to specify ad.ditional side constraints (such as buckling). Nei­

ther of these was done. It is not clear whether or not any advantages 

would still ensue from the use of the theorem in either or both of these 

latter cases. 

Methods of Solution 

Two methods of solution are generally available for the optimization 

process of a statically determinate structure. 

1. Classical Method. This method consists of two steps: 

a. all the constraint equations of the statical equilibrium set are 

used to red.uce the number of variables in the objective function to a mini­

mum, and 

b. the reduced objective function is minimized with respect to the 

remaining variables by classical mathematical methods. 

2. Numerical Method. Any suitable programming method may be used to 

optimize the objective function subject to the given constraints. 

When the structure is not reducible to a determinate structure by the 

assumption that it is fully and homogeneously stressed, a solution may 

still be possible by using an analogous structure to relate Xj, Zj and , 

after which  ̂F̂ .r̂  is optimized by the classical method. Such solu­

tions however, are a minimum only for the specific class of structures 

considered in the analogy, and there is no assurance that a different 

class would not yield a lesser minimum. 
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These methods will be discussed in more detail in the context of 

lattice and shell optimization techniques below, and will be illustrated 

by application to specific problems in chapter four. 

Lattices of One Layer 

To understand the reasons for choosing lattices of one layer to illus­

trate the application of the procedures outlined above, consider the cross 

section of a generalized lattice of two layers shown in Fig. 3.2. If such 

a structure is to be all under compression as is required if the volume is 

to be a minimum, then the inclined members have the function of dis­

tributing the loads between the two layers. The minimum volume would be 

obtained when the upper layer merges into the lower layer, the distance 

between the two layers is zero, and the inclined members vanish. Thus, 

minimum volume is obtained with a lattice of one layer. There are, 

however, some marked benefits to be obtained with a two-layered lattice. 

Among these are greater rigidity, greater assurance of safety against 

overall buckling, and the capability to offer some bending resistance as 

a safeguard against overloads. The volume of the inclined members is the 

material price paid for such benefits. Borrego (U) has catalogued many 

different lattice grid geometries and their combinations into multi-

layered lattice systems. 

In accordance with the generalized loading system of Fig. 3.I, the 

objective function can be expressed as, 

I ( I + I } L. (3-6) 
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Fig. 3,2. Cross-section, of generalized lattice of two layers. 
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The negative signs indicate that a compressive structure is required. 

In that case, the stress of all parts of the structure, is a = -fg, and 

the volume can be expressed as 

V = — — y Fz.rv 
fc_ 

Since the absolute value of  ̂̂ i-?i is to be minimized, it is convenient 

at this point to reverse the sign convention and treat inward loads as re­

sulting in positive P̂ .r̂  terms, it being understood that a positive 

 ̂F̂ .r̂  will require a compressive structure, and a negative one a 

tension structure. Consequently, 

I Fi.ri = I XjLj + 2 PiZi (3.7) 

To minimize equation 3-7 it is necessary to relate Xj to P̂ , z± and 

Lj since Xj in fact depends on the others. 

To this effect, it is often convenient to note (Fig. 3.1) that, 

I Zj = I Pi (3-8) 

and, since no bending is to be permitted to arise. 

while tan = 

Classical method 

As discussed earlier in this chapter, it is necessary when using the 

classical method, to utilize all the equations of equilibrium to reduce 

the variables in ̂  F̂ .r̂  to the minimum number of independent variables. 

% 
tan 0 

'(zi) 

(3.9) 

(3.10) 
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Let s be the total number of variables appearing in  ̂̂ i-̂ i and in 

the equilibrium constraint equations, and let r be the number of constraint 

equations. Then the minimum number of independent variables, n, in which 

% F̂ .r̂  can be expressed is n = s-r . 

After  ̂F̂ .r̂  is expressed in terms of these n number of variables, 

n additional equations are made available for obtaining the solution by 

letting 

I Fi-ri)  ̂Q  ̂ j = 1, 2, 3... n (3.11) 

where Xj are the remaining n independent variables. Which variables are 

retained as independent is immaterial to the process, while the use of the 

equilibrium equations to drive out the s-n dependent variables insures 

that the solution vector will satisfy the equilibrium constraints. 

However, there is no assurance that equations 3.11 will have a 

simultaneous solution within the feasible region, or even a solution at 

all. If the jth of equations 3-11 does not have a solution within the 

acceptable limits for the given variable, , then the minimum % F̂ .P̂  

will be found at one of the limits for x̂  (Burington (T)). When a 

simultaneous solution of equations 3.11 is not possible, or does not 

yield a solution in the feasible space, then the number of combinations to 

be investigated by separately testing the limits of each variable in­

creases rapidly with the increase in the number of variables involved. 

Therefore, this method becomes very laborious if the statical equilibrium 

constraints are many, or if the number of independent variables (number of 

degrees of freedom) in % F̂ .r̂  is greater than two. 
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For simple illustrative purposes consider the two-dimensional frames 

for Fig. 3.3 and Fig. 3.k. In both, it is assumed that the loads and 

the dimensions L and are given, but that the ordinates, % , are varia­

ble. The optimum 2̂  are to be found for minimum volume. 

The 1 of the first frame (Fig. 3.3) can be expressed as 

Equation 3.12 includes three variables (X̂ , 2̂  and Zg). The equations of 

statics will introduce three more variables (ZQ, and Xg). Therefore, 

the total number of variables is six. There are three equations of 

statics. However, note that when all the members are assumed to be fully 

and homogeneously stressed, there will be no bending at points 1 and 2. 

The frame becomes a mechanism and consequently and must always be in 

proper proportion for the equivalent pin-connected frame to be in unstable 

equilibrium. Thus, the conditions that the moment at points 1 and 

2 be zero provide two additional equations of statics for a total of five 

equations. Therefore, the optimization of this structure is a problem 

with only one degree of freedom (six variables minus five equations). 

Consequently, prior to the optimization of equation 3.12, all the equa­

tions of statics must be used to express equation 3.12 in terms of only one 

unknown. 

For the second frame (Fig. 3-̂ ), using node 0 as the origin, % .r̂  

can be expressed as 

l\.r̂  = X̂ L + P (3.12) 

I^i XL + P.z 
0 ^ 2 11 

(3.13) 
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Fig. 3.3. Frame of one degree of freedom. 

Fig. 3.4. Frame of two degrees of freedom. 
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Equation 3.13 includes four variables (Xg, Z2» 2̂̂ » and two more 

(XQ, ZQ) will be introduced by the equations of statics for a total of six 

variables. There are again three equations of statics, plus, this time 

the condition that the moment at point 1 be zero, for a total of four 

equations. The optimization of this frame has two degrees of freedom. 

The equations of statics must be used to express equation 3.13 in terms 

of only two variables prior to the optimization process. 

It may be shown, performing the optimization of the second frame, 

that its optimal solution occurs when the two supports are at the same 

level (i.e. Z2 = O), regardless of the horizontal position of point 1. 

This result may be used to illustrate an additional feature of the method. 

That is, if the class (within which the optimal, solution is sought) is too 

broadly defined, the solution may converge on a structural form of greater 

efficiency (lesser volume), not itself a member of the desired class. 

(This result was noted by Prager (27) in connection with other optimiza­

tion problems ). Thus, if the structural form desired is one with Z2 equal 

to some finite value other than zero, then Z2 should have been so speci­

fied. Allowing Z2 to vary enlarges the class to a more general class 

(where aii values of Z2 are permissible) and the solution will obviously 

be optimal for this larger class and not necessarily for the one 

desired. The restrictions necessary to sufficiently limit the class of 

structures to be considered are not so obvious in more complicated struc­

tures . 
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Nonlinear programming solutions 

When the number of independent variables (and the equations of statics 

linking X., P. and z. as well) are too many, then a nonlinear programming 
J J- J-

solution becomes useful. 

In applying such a solution, equation 3.7 expressing  ̂̂ ±'̂ ± 

terms of X̂ , and (or suitable alternatives) becomes the objective 

function to be minimized. There is no requirement to eliminate the de­

pendent variables from the objective function. The equations of statics 

linking X̂ , P̂  and ẑ  become the constraints to be satisfied by the 

nonlinear programming technique while optimizing the objective function. 

Nonliner programming techniques are required because the constraints will, 

in general be nonlinear, involving products of variables. 

Nonlinear programming solutions are interesting because conceptually, 

some side constraints such as buckling or other limiting factors could be 

added, if desired, to the constraints of statics. This, however, was not 

done on any of the examples of this dissertation. 

Shell analogy solutions 

When the grid system desired in the lattice makes the structure 

indeterminate, it is not possible, by means of only the equilibrium con­

straints (equation 3.2), to relate Xj, L̂ , P̂  and ẑ  as is necessary to 

ultimately express the objective function (equation 3.7) in teims of 

the required number of independent variables. It will then be necessary 

to include considerations of compatibility of deformations (equations 

3.4) which in turn require an a priori definition of geometry and rela­

tive bar sizes. 
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Since all that is required is a method for linking Xj, L̂ ., and 

ẑ , an alternate approach is to use an analogous shell in place of the 

lattice structure. In so doing, the constraint conditions of the lattice 

programming problem are replaced by the equations of equilibrium applied 

to the shell, provided that the conditions required for the shell to be 

analogous to the lattice are satisfied. 

Because of the specific use to be made of the analogy, the only con­

ditions that must be satisfied are: 1) geometricsil similarity and 2) 

force resultant correspondence. It is not necessary that strains in 

lattice and shell be analogous unless the same analogous shell is also to 

be used to investigate deformations or residual stresses in the unloaded 

lattice. 

Geometric similarity is easily satisfied by assuming that the nodes 

of the lattice lie on the middle surface of the shell. 

Force resultant correspondence is satisfied by l) replacing the dis­

continuous loads (on the nodes of the lattice) by either line loads or 

distributed loads on the shell but with the same force resultants, and 

2) by insisting that the resultants of the bar forces and of the shell 

tractions on the appropriate portion or element of the shell be the 

same. 

The procedure to insure correspondence of the bar forces - shell 

traction resultants is very straight forward. It is primarily a geomet­

rical procedure of assigning the bar fields, or portions of the shell 

whose traction resultant must equal the particular bar force or forces. 

For detailed discussions see Benjamin (3) or Parikh and Norris (26) who 
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also discuss strain correspondence. 

The establishment of the analogy requirements, when coupled with the 

further requirements that equilibrium of the shell be satisfied, yields 

relationships between the stresses at each point throughout the shell. 

These relationships must be integrated to obtain a geometrical equation 

describing the shape of the shell. Finally, the equation of the shape of 

the shell is used in the objective function to reduce it to an expression 

in only one variable permitting the minimization of the objective function 

with respect to this one variable by classical mathematical methods. 

Step by step the procedure is as follows: 

1. Replace the load system on the lattice by the equivalent load 

system on the shell and rewrite 1 

2. Establish member force-shell traction requirements to be satis­

fied. 

3. Assume all lattice members to be fully and homogeneously 

stressed, and check to see if this imposes any specific requirements on 

the shell tractions (i.e., if If̂  = ffNg)). 

ii-. If no requirements ensue from step 3, then it is believed that, 

when the loads are distributed over the surface of the shell, the assump­

tion that ~ ĉ result in minimum lattice volume. This 

assumption is suggested since then the shape of the shell would be a 

"funicular" surface for the loads. 

5. Either step 3 or step h will result in a mathematical equation 

linking and the shell tractions. Using this relationship, and 

using the three equations of equilibrium for each element of the shell 
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based on membrane theory, it is then possible and necessary to obtain a 

general expression for the shape of the shell (z = function of position on 

the shell). It is not necessary to consider compatibility constraints. 

6. Rewrite  ̂F̂ .r\ (equation 3.7) for the shell using the eâ pres-

sion for z of step 5- After completion of this step  ̂F̂ .r̂  should now 

be expressed, in terms of only one unknown, say the maximum ordinate (rise) 

in the shell• 

7. Minimize F\.r\ with respect to the remaining variable. 

The completion of step 7 yields the optimum geometry for the 

lattice. For a final design, the shell stresses should be coiiç)uted 

making use of the final geometry of the structure, and the relations of 

step 2 are then used to compute the bar forces in the lattice. Ultimate­

ly, of course, as in the other two methods, the equations of compatibil­

ity must be used to specify the unloaded configuration of the structure 

and its residual stresses in that state to be able to construct it. 

In practical applications, step 5 usually will involve the use of 

numerical integration procedures. 

To avoid the difficulties of numerical integration, it may be 

acceptable to assume that the optimum will be of a specific integrable 

shape (say paraboloidal, hyperboloidal, spherical). To do so, of 

course, limits the class of structures within which the optimum is to be 

found to the class selected (aH members of the class of the same shape). 

Furthermore, such an assumption may be incompatible, in some cases, with 

the requirements of step 3, or with the requirement that all members of 

the lattice be homogeneously stressed. Such possibilities should be 

checked before proceeding with the assumed general shape. 
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It is noted that minimization of ̂  F̂ .r̂  of the analogous shell 

while yielding a least volume lattice (of that class) does not necessarily 

also minimize the volume of the shell itself. The least volume shell 

shape will be the same as the lattice (and obtainable by minimization of 

% F̂ .r̂  alone) only if the shell is itself homogeneously and fully 

stressed. Shell volume minimization is discussed in a separate section in 

this chapter. 

For comparison, in the examples of chapter five, the optimum ge­

ometry for lattices is found by consideration of both the lattice and the 

analogous shell. The corresponding lattice and shell volumes are compared 

therein. 

Advantages and disadvantages of the methods 

1. Classical method. This method is limited to consideration of a single 

system of loads and, from a practical point of view, to statically deter­

minate structures. It becomes laborious when the equations of statical 

equilibrium are many or when the independent variables of the problem are 

more than two. Within the practical limitations on the number of varia­

bles, it is better than the other methods in that it yield a global 

optimum for the system of loads considered, and provides a "feel" for the 

increase in volume that may result from deviation from the optimal solution. 

This method would probably not be useful from a practical point of view 

if side constraints (buckling, etc.) are part of the problem. 

2. Nonlinear programming method. This method, as presented here, is 

also limited to statically determinate structures and a single system of 

loads. It is particularly suited for the solution of problems with a 
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its use is also a global optimum, but there is no "feel" for the changes 

in the volume due to d.eviation from the optimal solution. It may be possi 

ble to modify and. extend this method, to adapt it to the consid.eration of 

ad.ditional side constraints and. multiple systems of load.s, but it is not 

clear whether expressing the objective function in terms of F̂ .r̂  will 

be ad.vantageous in those cases. 

3. Shell analogy method.. This method is the only one of the three that 

is suitable for statically ind.eterminate structures. It is limited, to a 

single system of loads. Since a specific class of shell (conoidal, para-

boloidal, etc.) must be assumed, to avoid numerical integration difficul­

ties, the solution is optimal for only that class of lattice. The 

lattice therefore, is only optimal for all lattices with nod.es similarly 

related and it is thus not a global optimum solution for the original 

problem. Nevertheless, information with respect to such restricted. 

optimal solutions is useful when lacking a means to obtain a global opti­

mum. 

Consid.erations of the tension ring 

The optimization process described herein assumes that the supports 

are able to resist the thrust of the dome or dome-like structures. 

It is only with this assumption that it is possible to design an all 

compression structure. Often, however, because of the nature of the 

media in which the supports are to be built, or because the structure 

is to be supported by columns or walls, no such requirements can be made 
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of the supports. Then, it is expedient to use a tension ring around the 

perimeter of the lattice or dome to take the horizontal components of the 

thrusts of the structure by pure tension. If the ring is considered as 

part of the structure, then the structure is really a composite of com­

pression and tension members. Thus, it is pertinent to ask if this method 

of obtaining the optimal structural form for least all compressive volume 

does not do so at the expense of uneconomically large tension rings. 

This question -will be pursued in this section. 

Consider a generalized compression lattice with a tension ring. 

Such a structure is shown in Fig. 3-5 where the lattice and the ring are 

shown as two free, body diagrams. 

If the subscripts L, R and T denote the lattice, the ring and the 

total structure respectively, then, for the lattice 

-fc = ( I Fi.r̂ )Lv (3.14) 

and for the ring, 

4  V R  =  ( I  î i - î i ) » .  ( 3 . 1 5 )  

while, for the entire structure, 

4 '  ( I  Fi-fi)? (3-") 

In the above and throughout the rest of this section, since tension 

and compression members are involved, the sign convention for  ̂F̂ .r̂  

will be as originally assumed (outward loads result in positive  ̂ î'̂ i) 

and tension stresses are positive. 

Comparing these three equations, it is obvious that 
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Zj* 
Fig. 3.5. Generalized compression lattice 

with tension ring. 

4 

R 

ii/L 

R 

Fig. 3.6. Graphical representation of 

equations 3.14 through 3.18. 
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or 

( I Fi.r̂ )̂  = ( I F̂ .r.)̂  - (I (3.18) 

The resuit of equation 3.18 can be verified, by superposition of the 

force systems if it is noted that ( ̂  ̂ i'̂ î ij results from consideration 

of the vertical forces alone, and ( ̂  ̂ i'̂ î L both the vertical 

forces and the horizontal force system of the ring on the lattice. Equa­

tions 3.14 through 3.18 are graphically represented in Fig. 3.6 against 

varying rise-to-span (Vl) ratios of the generalized structure. Point A 

in that graph corresponds to the Tninlmum volume lattice. 

Fig. 3.7 shows a plot of the volumes of the lattice, the tension 

ring and the total structure. In Fig. 3.7, point A denotes the mini mum 

volume lattice and point B the ring-lattice structure of minimw total 

volume. It is apparent that if the volume of the total structure is to 

be minimized, then the rise-to-span ratio must be increased beyond that 

of the minimum volume lattice. For lesser rise-to-span ratios, the 

thrusts are higher and thus both the volume of the lattice and the volume 

of the ring increase. Since the tangent to the curve at A is zero, 

and Vg decreases with increasing rise-to-span ratios, it is always possi­

ble to decrease the total volume by small increases of the rise-to-span 

ratio. For larger increases of the rise-to-span ratios, however, the 

increase of the volume of the lattice quickly overtakes the reductions 

due to the lesser tension ring volume and the total volume begins to 

increase once more. Thus, if a tension ring is used, the possibility of 

decreasing the total volume of the structure by a smal 1 increase in the 

rise-to-span ratio should be investigated, even though the reduction of 
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Fig. 3.7. HLot of the volumes of the lattice, 
the tension ring and the total structure versus 

rise-to-span ratio. 
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total volume thus achieved may not be too great. To find the point B 

at which the total volume is a minimum, the function to be minimized 

is + V̂ , and 

\ ( I Fj-ri)̂ ! + Î i-̂ î Ri' (3.19) 

or, 

= ^ll^iZil + II XjLjl • (3.20) 
c t c 

If the allowable tensile and compressive stresses of the material are 

numerically equal, then equation 3.20 reduces to 

VT = 7 { II PiZil + 2|I XjLjl } . (3.21) 

Some of the examples of chapter four were optimized with and also 

without tension rings in order to illustrate the method and compare the 

results• 

Shells Under a Membrane State of Stress 

Shell examples presented 

The illustrative examples of chapter four and five were selected 

primarily to illustrate the application of the methods developed in this 

chapter to the optimization of lattices. Therefore, the shell geometries 

considered therein are contingent upon the geometry of the lattice to 

which each serves as an analogy. Those examples, although not 

constituting an illustration of the methods to be suggested in this 

section for shell optimization, do illustrate most of the points dis­

cussed below. 

The shell example of chapter four (a paraboloidal shell) is an 
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optimum within its class and serves to illustrate the procedures used when 

numerical integration is to be avoided. In that case the selection of an 

integrable shape (paraboloid) makes it impossible to have Oq = f̂  every­

where. The resulting optimal solution (presented with and without tension 

ring) is optimal only with respect to all other paraboloidal shells sup­

porting the same loads. It may be added that generally the easiest shapes 

to construct are those whose geometry can be expressed in closed form 

mathematical expressions. 

Shells of absolute minimum volume 

The expression, derived from the theorem of zero absolute potential 

energy, that will be used in the search for a mi ni ttiutti volume shell is 

/â dV + = I (3.22) 

When the shell is to support loads similar to those considered for 

lattices, equation 3.22 becomes 

/ai dV + Jâ àY =  ̂X. L. + [ P z (3.23) 
J J i J- 3 

where the summations of the right side are actually obtained by integra­

tion of the horizontal component of the shell force per unit length 

around the perimeter of the shell multiplied by the corresponding position 

vector, and by integration of the distributed load (assumed here to be 

distributed on the horizontal projection of the area) multiplied by the 

differential area of the shell over which it acts and by the correspond­

ing position vector. 

To obtain the global minimum shell, to support a given system of loads, 

it follows fzTom equation 3.23, and from the hierarchy of structures of 
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chapter two, that = Og = f everywhere. In that case, 

n X. L^. -IP,., L 

This volume, however, will be a global minimim only for the given 

1 Xj Lj and  ̂ ẑ . It may be that in order to force = Og = 

f̂  everywhere the horizontal reactions, and hence % Xj Lj, must be so 

increased that a lesser volume would result with a structure in which 

only (or 02 ) is equal to f̂ . The two structures cannot be considered 

comparable. In many practical cases the use of the equations of equilib­

rium (coupled with the requirement that = 02 = fg (or f̂ )) when 

substituted in equation 3.24, give rise to complicated differential equa­

tions which must be integrated prior to the optimization process. It is 

suspected that many of the resulting equations could only be integrated 

by numerical procedures. The integration is equivalent to finding the 

equation for the middle surface of the shell that would resist the given 

system of loads by constant stress, while the subsequent optimization is 

equivalent to finding the optimum rise-to-span ratio. 

That shell or membrane structures under uniform biaxial compression 

or tension are inherently more efficient than other shell shapes is 

certainly not new. Thus, often use is made of spherical shapes for con­

tainers which must resist very high internal or external pressures, for 

example, gas containers, nuclear reactor containment vessels and deep 

depth submersibles. Otto (23) discussed the great efficiency of mem­

branes, and as pointed out in chapter two, considers them as the lightest 

of all structural systems. 
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Many different investigators have obtained the geometries required 

for a shell or membrane to resist a given system of loads under constant 

membrane stress in all directions. Some achieve this by variability of 

the shape alone, the thickness being constant. Others have varied both 

the shape and thickness. For an example of the latter (attributed to 

¥. Flugge), which was obtained by numerical integration, see Timosbenko 

and Woinowsky-Krieger (38). 

To obtain the shape required for a uniform thickness and uniform 

stress shell, in 1959 Harrenstien (15) advanced the use of a soap film 

analogy when coniplex boundary shapes are involved. The shape of the soap 

film and of the shell are analogous, but the load on the soap film must 

be the reverse of that on the shell. Since the soap film supports the 

loads under constant tension, the shell similarly shaped and loaded with 

the reverse loads will support such loads by constant couçression. A 

problem with such a method resides in the difficulty of applying suitable 

loads to the soap film (such as, for example, distributed loads acting in 

a vertical direction and not perpendicular to the surface of the soap 

filjTi). Otto and Stromeyer (24) also used soap bubbles to determine suit­

able shapes for constant stress (tension) membranes. Brotchie (5) devel­

oped mathematical solutions for several direct design problems, some of 

which involve constant thickness and constant stress shells. 

The most promising of all, however, is a finite element method of 

creating a mathematical membrane. The method was recently developed by 

Smith and Wilson (32) and is conceptually the same as Harrenstien* s 

method mentioned above, but mathematically liberated from the physical 
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limitations of the soap film analogy. Smith and Wilson advocated the use 

of the method to obtain shapes of shells or of dams that are more efficient 

and hence of lesser volume. They were not assured, however, that they had 

in fact attained the least volume shape by their method alone. To choose 

the best among several shapes of the same class they actually computed and 

compared the volumes. It is felt that the theorem of zero absolute poten­

tial energy could enhance their method by providng the assurance required 

that the miniTrnTm shape has been obtained, while the concept of the minimi­

zation of % could be incorporated into their finite element formu­

lation of the problem to yield, in one step, the least volume shape for 

the loads considered. 

Least volume shells of integrable shapes 

An optimum shell within a particular class of integrable shell shapes 

can be found by using a slightly different objective function. This func­

tion is obtained by rewriting equation 3.22 in the equivalent form, 

^ - %-/c, ay (3.25) 
Ic Ic 

where it is assumed that the thickness of the shell is so selected that 

= f̂  everywhere. The mini mm volume within such a 

class of shells would be one where the entire right band side is minimized. 

To minimize the right hand side, the only difficulty is the necessity 

to first integrate the second term. The expression of ̂  F̂ .r̂  in terms 

of the ordinates, z, is no problem since the equation for the shape of the 

shell is known. 

The optimization should present no insurmountable difficulty if the 
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following procedure is followed. 

1. Using the equations of equilibrium, determine which of the two 

tractions is larger for each region of the shell. Assume that — ̂ 2 

everywhere. 

2 .  Proportion the shell so that = f̂  everywhere. Then, 

IT 

= -f: ' 
c 

and, consequently 

a 2 tf 

or, o = fc . (3.26) 
2  N 1  

3. Using the latter result in equation 3.25, 

 ̂= S Î (3.27) 

4. The ratio will generally be a function which when multiplied 

by a suitabily selected expression for dV can be integrated to yield 

another function. 

5. After the integration of step 4, it may be necessary to change the 

variable in either the resulting function or in ̂  so that the entire 

right hand side of equation 3.27 is expressed in terms of the same 

variable. 

6. Minimize the entire right hand side with respect to the remaining 

variable. 

Completion of step 6 results in the shape of the shell of the 

class selected. 

/ 
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The paraboloidal shell example of chapter four illustrates this 

method. 

OccasionallyJ the minimization of step 6 may be complicated as the 

resulting equation may be a transcendental equation. However, since the 

equation is of only one degree of freedom, a solution is readily obtained 

in that case by graphical methods. (Phis was done in the last example of 

chapter five (although that example is one in which ai = 02 = f̂ ). 
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CHAPTER FOUR - ILLUSTRATIVE EXAMPLES 

General 

The examples presented in this chapter are designed to illustrate the 

applicability of the methods developed in chapter three (classical method, 

numerical solution and shell analogy) to optimize latticed roof structures. 

Also presented is an example in which the optimization of a paraboloidal 

shell roof with and without tension ring is illustrated. 

Since the aim of this chapter is to illustrate the methods, the struc­

tures considered are not necessarily practical structures. For simplicity 

of computations, the structures are optimized with respect to a downward 

load of total magnitude W which is assumed to be evenly distributed over 

the horizontal projection of each structure. Thus, extensive use is made 

of symmetry as appropriate to simplify the solutions. 

The solution of each example is carried out to the point where the 

optimum geometry of the structure is determined. Thereafter, the process 

of design is considered a straî t forward procedure which would include: 

1) determination of specific geometry (bar areas, shell thickness, etc.), 

2) determination of unloaded geometry and residual stresses (by the reverse 

deformation method of Rozvani (29))» and 3) modification of the design as 

appropriate to accommodate secondary loads. 

Rectangular Grid Lattices 

In this example, the general formulation of the classical and 

numerical solution to the optimization of a rectangular, fixed-jointed grid 

lattice covering a rectangular area will be considered first. These 
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methods will then be applied to a square grid lattice. 

Typical formulation 

Fig. It.l shows a typical rectangular grid in horizontal projection 

with the coordinate and numbering systems to be used. 

Note that the assumption that the structure is fully and homogeneously 

stressed immediately simplifies the optimization problem. By this assuiiç)-

tion, which is necessary if least volume is to be obtained (see chapter 

two), the indeterminate fixed-jointed grid is rendered to be in unstable 

equilibrium with the design load. 

It is pertinent to investigate the degrees of freedom of such a 

structure since, as discussed in chapter three,  ̂F̂ .r\ must be expressed 

in terms of only the correct number of independent variables (by using 

all available equations of statics or geometry) prior to the minimization 

process, to insure that the solution will satisfy geometry and statics. 

The number of unknowns include: 

1) two reaction components per reaction point (X and Z, or Y and Z), or 

k (m + n) reaction components; 

2) one z coordinate for each interior node, ij, or m(n) z coordinates; and 

3) two force components (T̂  and T̂ , or T̂ . and Ty) for each member, or a 

total of 2[(m + 1) n + (n + l) m] force components; 

or a grand-total of 5 (m) n + 6 m + 6 n unknowns. 

The number of equations available include: 

1) two equations of equilibrium at each reaction point, or 4 (m + n) 

equations ; 
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mO m+1.0 

Fig. 4.1. typical rectangular grid. 
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2) three equations of equilibrium at each interior point, or 3 m (n) 

equations; and 

3) one equation per member relating its force coniponents, and 

(or Tg and Ty.) with the horizontal or Xy) and vertical projections of 

the member, or (m + 1) n + (n + l) m equations; or a total of 5 (m) n + 

5 m + 5n equations. 

Thus, in the general case, subtracting the equations from the un­

knowns, such a rectangular grid lattice has m + n degrees of freedom. 

When using the classical method it is necessary to write the usual 

objective function (volume) in terms of ̂  ?̂ .r\ and to use all the avail­

able equations to reduce the unknowns in I to only a number of un­

knowns equal to the number of degrees of freedom. The expression can 

then be minimized by classical methods. Alternately the original expres­

sion for 1 Fjyrj can be minimized by programming procedures. Both these 

methods will be illustrated. 

The general forms of the equations are; 

1) For the objective function, 

 ̂  ̂ hs + y ̂13 + I  

2) For the equations of equilibrium at the reaction points. 

z. . ij,(i+l,j) 
(4.2) 

X i -  -  T  = 0  ( 4 . 3 )  
 ̂ *ïj,(i+l,j) 

and similar equations for the y grid lines. 
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3) For the equations of equilibrium of interior points. 

*Xi-l,j),ij ij,(i+l,j) 
0 

(4.4) 
0 J 

T, z + Tz 
(i-l,j),ij . (i,j-l),ij 

- P., = 0 

(4.5) 

where all bar forces, T, are assumed positive if compressive. 

k) For the equations of geometry for each member in the x-grid lines. 

and a similar equation for each member in the y grid lines. 

In the above equations the sign convention adopted, to simplify com­

puter applications is that the loads act vertically doisn and the reactions 

are up and inwardly directed, while all the members are assumed to be in 

compression. Then all the variables in the equations are positive. 

Note that the volume could also be minimized by expressing the objec­

tive function as 

where and are respectively the area and the length of each member. 

Such formulation was used for example by Schmit and Kicher (31) and by 

Crockett (11) for three bar trusses. However, the use of such straight 

forward formulation introduces two additional unknowns per member, and 

consequently, increases the number of constraint equations by twice the 

number of members in the structure. 

nzi+l,j Zij] - ̂  ̂̂Zij,(i+l,j)̂  " 

V = I â  
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Classical solution 

For simplicity the lattice to be optimized -will he a square lattice 

consisting of 4 x 4 grid lines subjected to a total loaxi, W, horizontally 

distributed and allocated equally to each node. Thus, each interior node 

carries an equal load, P = w/25, while a load of W/lOO passes directly to 

each comer support point, and w/50 to other support points. These loads 

on the supports will be ignored. Such a lattice is shown in Fig. k.2.  

Because of symmetry only one-eighth of the lattice as shown in Fig. 4.3 

need be considered. Such a structure, after the use of all the conditions 

of symmetry, can be shown to have two degrees of freedom. 

It is convenient to introduce two more unknowns P, and z. where P 
1 4^ 1 

is the portion of the load P taken by grid line 1 and z is the ordinate 
1 

of point 4 in grid line 1. This frees the two grid lines for independent 

application of the equations of statics. Two other equations mist be 

added also and they are: 

P + P = P, and 2 = z = z 
12 4 4 4 

1 2 

where the subscripts 1 and 2 refer to grid lines 1 and 2. 

Using these and. all the equations generated by equations 4.2 through 

4.6, equation 4.1 can be reduced to 

2Pẑ  4Pẑ  aL2 (4.7) V = P 
f 
c 

l4z^ + ,4 + Ji + + —L 
P + 4Pi 3P - 2Pi 5z^ 5Pz 4 

where the two remaining independent variables are P̂  and ẑ . 

Using the classical method, occurs when. 
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Fig. 4.2. Lattice to be considered. 

Fig. k.3' One-eigbth of the lattice remaining 
after the use of synmetry. 
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3V = P 
3P fc 

8PZK + 

(P+4P̂ ) (3P-2P;) 5Pẑ  

a 0, (4.8) 

2P , 4P 8l2 UPL̂  3V = 2_[lU . _ _ 
aẑ  f ^ [  p+i+p̂  3P-2P-1 5(2̂ )2 SPCẑ yz 

= 0. (k.9) 

The two equations 4.8 and 4.9 may have no solution within the 

permissible range of values for and P̂  (ẑ  >_ ® 0 <P̂  ̂ ). Then, 

the Tn-i-m'Tmnn volume within the acceptable or feasible region will be found 

at one of the limits (i.e. ẑ  = 0 or = « and Pj = 0 or P̂  = P). 

The least volume structure, if it exists, must satisfy equation 4.9 

since it is obvious, from equation 4.7, that ẑ  = 0 or ẑ  = « yield 

infinite solutions. Thus, either equation 4.8 must also be satisfied or 

the minimum will be found at P̂  = 0 or P̂  = P. 

Evaluation of equation 4.8 at P̂  = P shows that it is positive for 

A.n values of ẑ .̂ Therefore the volume decreases with decreasing P̂  in 

the vicinity of that limit and the least volume solution is not to be 

found there but with lesser values of P̂ . 

Evaluation of equation 4.8 at P̂  =0 and consideration of its deriv­

ative with respect to ẑ  shows that it does not change sign between 

P, = 0 and P, = P for all values of z such that 
11 4 

\ < L/gg = L (0.335410197). 

Consequently, only two possibilities remain, either 1) the two 

equations have a common solution at a ẑ  value equal to or greater than 

the one just given, or 2) P̂  =0 and equation 4.9 is satisfied with 

Pj = 0 and ẑ  less than the given value. It can be verified that the 
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second possibility applies, and consequently, the mini mm volume is ob­

tained when, 

Pj = 0, and = L (0.30382181) (4.10) 

Using these values, equations 4.2 through h.6 can be used to obtain 

the value of all the other variables. Among them. 

and, 

and, from equation 4.7 

(4.11) 

V = Si. 
min fg 

(4.12) 

A three-dimensional plot of the surface defining the volume, V, in 

texms of and is shown in Fig. 4.4. The volume, V, is plotted versus 

Zĵ  for several values of P̂  between Pj = 0 and PjsP in Fig. 4.5. A 

similar plot of V versus Pĵ  for several values of ẑ  appears in Fig. 

4.6. (These three plots were obtained using a program for an lEM 360 

computer which computed the value of the volume for discrete values of ẑ  

and P̂  within the range desired for them and then produced three-dimensional 

views of the surface as it would appear when viewed from any ̂ ecified com­

bination of viewing angles. ) In all three plots point A is the value of 

ẑ at or above which ( aV/ gP̂ ) = 0 has a solution within the limits of 

P̂ . Point B corresponds to the global minimum (within the feasible space) 

represented by the values given by equation 4.10. 

Fig. 4.7 shows the shape of the minimum volume lattice. 
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oC 

0.500L 

Fig. 4.5. Plot of the volume versus for several Pj. 
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Fig. 4.7. Minimum volume lattice. 
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Nonlinear progrananing solution 

Hie use of a numerical procedure permits the optimization of equation 

4.1 (the objective function) subject to the satisfaction of all the 

equations of statics and geometry, equations 4.2 through 4.6 (the con­

straints), without having to manipulate all the equations to express the 

objective function in terms of only the proper number of independent 

variables. 

The program selected for use was AUKLET, written by Sposito and 

Soults (35), which, is based on the sequential unconstrained minimization 

technique developed by Fiacco and McCoimick (13). 

The program requires as input all of the equations defining the 

problem (objective and constraint equations) as well as their first and 

second partial derivatives. To avoid overflowing the computer data bank 

assigned by the program, and to reduce the laboriousness of preparing the 

input data, it was decided to use symmetry for the computer solution as 

well. Furthermore, a separate subroutine was used to develop and feed the 

computer the partial derivatives. In addition, l) equations 4.2 were 

eliminated by eliminating from the set of variables since it does not 

appear in any other equations nor in the objective function; 2) equations 

4.3 and 4.4 were eliminated (since it is obvious that they generate the 

requirement that all and all T̂  be equal to the X or Y value of that 

particular grid line) by replacing and Ty in equation 4.6 with the 

corresponding X and Y values. 

Thus, the set of constraint equations consisted of the three equa­

tions 4.5 of vertical equilibrium (one at each of the three nodes), and a 
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geometric equation ̂ .6 for each of the four remaining members with verti­

cal force components (numbers 13, 2h, 34 and 4$). The number of equations 

(seven) is seen to be the correct number needed since nine unknowns remain, 

namely X,, X , z,, z , z , Ty , Ty , and Ty , of which only the 
 ̂  ̂  ̂ 13 24 34 45 

first five appear in the objective function. 

For the conrputer solution the unknowns were non-dimensionalized by 

dividing all the variables (and equations) by L or P as appropriate, and 

numbered X (i) where i varies from 1 through 9 in the same order as they 

appear in the previous paragraph (ie X (4) = z and X (?) = T„ ). 

Two problems were encountered with the computer use of the program 

due to the unusual character of the feasible region defined by the con­

straint equations. The character of the feasible space, presently to be 

discussed, made it necessary to provide the computer an initial feasible 

solution (one satisfying all the constraint equations), and eventually to 

modify the constraint equations. 

The program is designed for a convex feasible space. A convex space 

is one in which if a line connects two points belonging to the space, 

then all points on the line must also belong to the same space. Each 

constraint which is expressed in terms of an equality violates the con­

vexity requirement since it describes a curve in two-dimensional space (if 

it contains two variables), a surface in three-dimensional space (if it 

contains three variables), and so on. The standard practice in the case 

of such a constraint is to expand the space corresponding to that particu­

lar constraint by replacing it by two constraints, a negative and a posi­

tive one each with some slack. For exançîle, the constraint, 

g (xi) =0 (4.13) 
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would be replaced by 

g (Xj,) + 0̂ and, -g (x̂ ) + ^ 0 (̂ .1̂ ) 

where and are small quantities. In effect the surface is given a 

thickness of + ê * 

In this problem, however, all the constraints are equalities. Con­

sequently, the space is so restricted that the expansion made by replacing 

all constraints by two equations similar to equations 4.l4 still rendered 

the computer unable to generate its own ititiaJ. feasible solution from 

which to begin the iterative search, and unable to generate a second 

feasible solution once given an initial feasible solution (except in one 

instance). 

To surmount this difficulty, the feasible space was expanded by 

simply replacing all equality constraints (all of them) similar to equa­

tion 4.13 by 

g (xj_) ̂  0. (k.l5) 

Since the optimum is expected to lie on the boundary of the feasible space, 

and since the equalities condition of equations 4.15 will then hold, it 

was expected that the optimum for the expanded feasible space would be the 

same as for the original more restricted space. That aU equalities be 

satisfied in the final solution could be verified by making sure that the 

values of all the constraint equations (which are part of the standard 

output of the program) be suitably close to zero. 

The expansion of the feasible space could also have been used to 

advantage in confuting the initial feasible solution since the modified 

constraint equations 4.14 could be readily satisfied. In fact, it may be 
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better to do so in other cases since a solution satisfying the equalities 

within normal accuracies may be slightly outside of the feasible space due 

to round-off errors, thus hanging-up the computer. In this case, however, 

since a feasible solution could be readily obtained, and it was desired to 

start the computer far from the optimum, it was decided to first generate 

an initial point satisfying the equalities. This was easily done by 

choosing an arbitrary value for directly evaluating all the vertical 

shears, T T„ T_ and ), and using geometry and the equations 
1̂3, 2̂4, 3̂4 

of equilibrium to compute X̂ , X̂ , z.̂ , and ẑ . 

From the classical solution it was known that at the optimum 

= 0. Thus to be far from the origin an initial value of P̂  = P 

was assumed. Then, to insure that the point was well within the feasible 

region, was arbitrarily increased by adding 0.2 to it alone to make it 

1.2. The initial feasible point could thus be depicted as point C in 

Figs. U.ii, J+.5 and k.G. The initial feasible solution, the computer ob­

tained solution and the exact solution from the classical method are 

shown in Table 4.1. 

The accuracy of the numerical optimization solution (to six signifi­

cant figures in most cases) can be seen to be more than adequate for most 

practical purposes. Greater accuracy could be obtained if required by 

modifying the convergence criteria used by the program to end the itera­

tions. 

The values of the constraints for this final solution are all less 

- 7 
than 1 X 10 verifying that all the equalities are satisfied. That the 

solution found is a global mi nimum can thus be assured, and further 
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Table k.l. Least volume square lattice 

Variable 
Initial Feasible 

Point, 
fPl = P) 

Computer Found 

Optimum̂  
Exact Analytical 
Optimum̂  

X(l) = 

X(2) = 

X(3) = 
X(4) = 
X(5) = 
x(6) = 

x(7) = 

X(8) = 

X(9) = 

F(X) = 

(XI/P) 

(Xe/P) 

(Z3/L) 

(zi /̂L) 
(ẑ /L) 

1.0 

0.2 

0.3 

0.5 

1.2̂  

1.5 

0.5 

1.0 

0.5 

1.85̂  

0.32914088 

0.98742059 

0.30382146 

0.30382195 

0.40509601 

0.50000015 

1.50000001 

, , -8 
4.94 X 10 

0.50000009 

1.3165614 

0.32914029 

0.98742088 

0.30382181 

0.30382181 

0.40509575 

0.50000000 

1.50000000 

0.00000000 

0.50000000 

1.31656118 

Îterations = 39- CPU Time = 6.6 sec. l/O Time = 13.8 sec. 
Region Used = 152K. 

Ĉomputed from analytical solution (equations k.lO, 4.11 and 4.12) by 
taking square roots of ratios of whole numbers. 

c_ 
increased by 0.2 from value of 1.0 which satisfies the equalities to in­
sure that point is well into the feasible region. 

Încreased by 0.10 to correspond with increase of X(5). 
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verified by noting that the value of the dual objective function at this 

last point was 1.3165617 (in agreement with the primal objective function 

to seven significant figures). 

Network Domes 

General 

The optimization techniques developed in this thesis are particularly 

useful in the optimization of dome like lattices. Some domes, for exançle 

a Schwedler dome with two diagonals in every bay, are indeterminate even 

after all joints are assumed to be pin-connected and thus require the use 

of the shell analogy method. The network dome, however, is a type of 

dome which is determinate, and stable if it has an odd mmber of sides 

(Benjamin (3)). A typical network dome of five sides is shown in Fig. 

U.8. The dome illustrated has two levels above the supports and an open 

top. 

This section will synthesize a least volume network dome optimized 

for a vertical load of total magnitude ¥ assumed to be evenly distributed 

over the horizontal projection of the dome. The dome selected will have 

nine sides and five levels above the supports including the peak center 

point, as the dome will have a closed top. The dome w±''l be optimized 

using the nonlinear programming method. 

Typical formulation 

A partial plan view of the network dome to be optimized is shown in 

Fig. h.S where the node numbering system to be used is indicated. The 

nodes are evenly spaced from the center to the supports, so that the in-
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Fig. 4.8. lypical network dome. 
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Fig. 4.9. Partial plan view of dome to be optimized. 
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cremental radial distance from a node in one level to the next is 

where r̂  is the radius to the support points, 0. 

Because of symmetry, only one-ninth of the structure including one 

node of each type need be considered. 

The load applied at each node corresponds to the load on the horizon­

tal area bounded by two meridians drawn through the midpoints between that 

node and the adjacent nodes on the same level, and by two arcs drawn at 

the midpoints between that node and nodes of adjacent levels. Thus, 

P5 =1 (^o/iof = _W_ 
2it r 900 

where P̂ is the portion of the load at node 5 on the one-ninth portion 

of the stzncture to be considered. It can be similarly shown that 

P,. = 8 P,, 

(4.17) 
P, = 16 

P2 =  2k Pg,  

?! = 32 Ps-

The objective function to be optimized, using the theorem of zero absolute 

potential energy is 

 ̂I Fi.ri} . 
fc min mm 

V _  9  
min 

%o fo + I  ̂ i ̂ i 
, i = 1,2,...5(̂ .̂18) 

min 

where X̂ is the horizontal component of the reactions at nodes 0, and ẑ  

is the vertical height of node i measured from the level of the supports. 

It is convenient, for computer applications to convert equation U.I8 

to a nondinensional expression. This can be done by dividing throughout 
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by factoring out the term P̂ rg. Doing so, and making use of expressions 

4.16 and 4.17, the objective function, equation 4.l8, becomes, 

,Xr 
. = {A + 32(̂ ) + 24(̂ ) + 16 (fl) + 8(̂ ) + (fS) } 

lOOfc P5 ro ro ro r̂  r̂  în 

(4.19) 

where it is only necessary to minimize the nondimensional expression in­

side the brackets. 

Since the structure, when assumed to be pin-connected, is stable 

(and determinate) it is expected that the problem will be of five degrees 

of freedom. Œhis is surmised since each can be independently varied 

and the equilibrium constraints can still be satisfied. Biis will be 

verified by consideration of the total nunJaer of variables and the total 

number of equations available. 

Prior to a consideration of the equations of equilibrium, it is use­

ful to write some general geometric expressions for the tangential, radial 

and vertical components of lengths of the members, which may later on be 

combined to yield direction cosines as needed. For this purpose, let L 

represent length, subscripted by T, R and Z when the tangential, radial 

and vertical components are meant. Each member will be labeled by the 

numbers of the two nodes it joins, and superscripts will be used to denote 

the node at which the component is computed. Then, the total lengths 

and are, 

T. = '-r sin 
(4.20) 

L.. = 2r. sin 20' 
11 1 

or, Lii = 
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and. Lij - J + (4. J ' 
ij ) iJ 

" 4^13* (4ij )'j •" \/' 
(4.21) 

where the qxiantities in brackets are constant even though 

1̂3  ̂  ̂

Furthermore, for i = 0, 1,2. . .k  and j = 1,2. . .k ,  

L̂ _ = Ljj cos 20°, 

J J 

%3 

3.5 

= r̂  sin 20 , 

rj sin 20 ; 

(4.22) 

while 
®33 

L .. sin 20 , 
J J 

L = r. - r. cos 20 , 
Hij J- J 

I'd = r. cos 20° - r 
Eij  ̂ J 

(4.23) 

and lr, = 2 . -  z . .  
J 1 

(4.24) 

Member 45 is a special case for which 

\ = 0, 

and. 

\, ' (V5)' 
L_ = 2, - z.. 
'45 5 4 

(4.25) 
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In All these only L involve variables (zĵ ). 

There are in general three equations of equilibrium to be satisfied 

at each node. However, the equilibrium of forces in a tangential direc­

tion will be automatically satisfied by symmetry at every node, as wiH 

the equilibrium, of forces in a radial direction at node 5» In addition, 

the equilibrium of forces in a vertical direction at node 0 is not needed 

since the vertical reaction needs not be computed and it does not appear 

in any other equations. 

Using T to denote the force in each bar (positive if compressive), 

and letting the subscripts and superscripts have the same meanings as 

above, the equations of equilibrium are then, l) considering equilibrium 

of vertical forces 

at node 5, T, 

at node 4, ETg. - % -  ̂= 0' 

34 45 

at node j, 2% - 2T - P = 0, j=l,2,3; 

(4.26) 

and, 2) considering equilibrium of forces in the radial direction, 

at node 4, 2 - 2 - -̂r = 0, 

at node J, T. 

34 

= 0, 0=1,2,3 

and, at node 0, 2T' X q  =  0 .  

(4.27) 

01 

In addition, it is necessary to insist that there be no bending in any 

bar (or joint). Thus, the force components in the bars must be related 

as follows: 
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i = ^ = i (4.8) 

% % 
Member 45 has only one radial component whether cozguted at node 4 or $. 

Consequently equation 4.28 gives only one eq-uation for member 4$. For each 

of the other inclined members, equation 4,28 gives rise to two equations 

one pairing the first two terms and the other one pairing the last two 

terms. Using equations 4.23, 4,24 and 4.25 in equations 4.28, and expand­

ing, one obtains 

for member 45, z 
5 to 

1 (r/5) = 0, 

for member ij 
• 

(r̂  cos 20° - rj) = 0, 

and, (r̂ : - r̂  cos 20°) = 0, 

. 
where i = 0,1,. ..3 and j = 1,2,... 4. (4.29) 

Equations 4.26 (five equations), 4.27 (five equations), and 4.29 

(nine equations) comprise the needed equations of equilibrium, a total of 

nineteen equations. For computer applications, it is convenient to non-

dimensionalize them by dividing equations 4.26 and 4.27 by P̂ , and dividing 

equations 4.29 by r̂ . 

A total number of 24 variables appear in the objective and constraint 

equations. The number of degrees of freedom is then five (24-19), as 

expected. For the numerical optimization process the variables will be 

labeled as follows: 
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x(l) through x(5) = through (Zg/r̂ ) 

1(6) 

X(7) through X(lO) (Tjj /p,) through (Î  /P̂ ) 

X(ll)through X(l4) (Tg /Pg) through (Tg /P̂ ) 
0 1  3 4  

X(15) 

X(l6)through X(20) = (T„ /?=) through (T̂  /?.) 
0̂1  ̂ 4̂5  ̂

and X(21)through X(24) = (T̂  /P ) through (Ti /P ) 
0̂1 5 34 S 

Least volume without considering tension ring 

It is assumed that the supports can provide the necessary thrusts 

and thus no tension ring is Tieeded. When this is the case, equation 

4.1$ is the correct expression for the entire volume of the structure 

(all in compression), and it is the objective function to be optimized 

subject to the nineteen constraints of equilibrium, equations 4.26, 4.27 

and 4.29 (after nondimensionalization). 

The program AUKLET, modified as already discussed, was again used. 

The comments with respect to the difficulties due to the non-convexity 

of the feasible region made in connection with the square lattice apply 

here as well since all the constraints in this case are also equalities, 

i.e. 

In this case, the feasible region was expanded by using the sub­

stitute constraint equations 

g (x̂ ) = 0. (4.30) 

g (Xi) + e 1 0, (4.31) 
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where e , a emai 1 quantity, was added to insure that round-off errors 

•would not lead the computer to reject as non-feasible the initial point 

fed in. 

The initial feasible solution was readily obtained by the following 

steps; 

1. Obtain all vertical force components by consideration of the vertical 

shears (equations h.26).  

2. Arbitrarily select the heights between adjacent nodes (Zj - ẑ ) and 

substitute these values, together with the shears of step 1, in equations 

ir.29 to find the radial force components of all inclined members working 

from the top down. 

3. Use the radial force components of step 2 in equations 4.27 to find 

the radial force components of the ring members. 

k. If All -"variables are positive, then obtain from the condition 

that Zg = 0 working up from the supports. 

The first guess resulted in some negative variables which could be made 

positive by modifying only the pertinent z - - z- terms. A solution thus 
V 

obtained satisfies all the equalities. If all variables are positive, 

then the solution is an acceptable initial feasible solution. 

After the first run, it was found that for some constraints the 

equalities were not being satisfied as evidenced by finite remaining 

slack. This first solution was then an optimum for the modified con­

straints of equations U.31 and not for the true constraints of equations 

U.30. Several trials were then made successively forcing the computer 

to satisfy the equalities by either adding a second constraint equation 
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of the type 

-g (x̂ ) + e  ̂0 

or by adding this second equation and discarding the original constraint 

of the type similar to equation 4.31. 

Since the computer seemed to have difficulty in converging rapidly 

(probably because the small differences between large mmbers in con­

straints equations k.29), it became necessary to use a better initial 

feasible solution. Intuitively, it was expected, as noted before in 

chapter three, that the optimum solution might be found when the dome 

would become a member of a more efficient class. In this case that would 

occur when the ordinates are so related that the forces in the ring 

members are zero. The ring members vanish, and the remaining lamella­

like dome would be in unstable equilibrium with the applied loads. 

The proportions which the ordinates, must maintain for zero 

ring force are obtainable from the equations of equilibrium (equations 

h.26, h.27 and 4.2$). Using them in  ̂ (equation 4.19) reduces 

the latter to an expression in only one unknown and amenable to direct 

mathematical optimization. Thus, the assumption that the ring members 

would vanish reduces this problem to one degree of freedom and allows 

the classical method to be used. 

Nevertheless, since such a solution depends on the validity of the 

assumption, it was decided to use the assumption only to provide a better 

starting point for the computer, but to allow the computer to solve the 

five-degree-of-freedom optimization problem and verify the assumption. 

With the new starting point the computer converged upon a solution 
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in which all constraints had slacks of less than 6.81 x 10"̂  and in which 

all the ring members had essentially zero forces. A partial list of the 

initial and final values of the variables appears in Table 4.2. The close 

agreement of the computer solution with the expected solution supports the 

assumption that the ring members would vanish at the optimum. The com­

puter solution appears to have lesser volume than the expected optimum. 

However, it is felt that the difference is due to the small e that were 

added to the constraint equations, and which expanded the feasible region 

to include a surface slightly below the surface describing the real feasi­

ble space. 

A schematic drawing of the dome is shown in Fig. 4.10, and a half 

cross-section of the surface on which the nodes lie is shown in Fig. 4.11. 

In an actual dome, to resist secondary loads, either the joints must 

be fixed, or ring members must be provided. 

The nonlinear programming method of optimization would be useful if 

it is desired to insist upon the existence of the ring members. In that 

case, a solution could be obtained by adding constraints of the type 

Tii - K. > 0 

where is any desired constant, with the dimensions of force, specified 

for the given ring member. The values should be selected giving con­

sideration to the known lengths of these members thus keeping their respec­

tive slenderness ratios above the value of incipient buckling. 

Least volume considering tension ring 

If the supports are not able to provide the necessary horizontal com­

ponents of the thrusts, a tension ring would probably be required. 
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Table 4.2. Least volume network dome without tension ring 

Initial Feasible 
Variable Point' a 

Computer Found 

Optimum̂  

Expected Opti­
mum 

X(l )  =  (Zl/fo) 
X(2)  =  (z2/ro) 
X(3)  =  (zg/ro) 
X(4)  =  (zi/rg) 
X(5)  =  (z^/ro) 

x(6)  =  (xyp^) 

F(X)  =  (Vmin 
Wrp 

lOOf, 

G(X)" 

X(7)  = 

X(8)  = 

x(9) = 

x(io)= 

0.4 

0.8091 

1.117 

1.261 

1.279 

50.27 

•) 111.74 

0.0 
0.0 

0.0  

0.002 

0.36161012 

0.73173258 

1,0103416 

1.1401758 

1.1566119 

55.572985 

111.15597 

111.15913 

0.0001290 

0.0001858 

0.0004165 

0.0032194 

0.36174314 

0.73173243 

1.0105236 

1.1404472 

1.1568632 

55.586177 

111.17235 

0.0 
0.0 

0.0 

0.0 

B̂ased on expected solution . 

Îterations = 12. CPU Time = 46.9 sec. l/O Time =93.8  sec. 
Region Used = l62K. 

'̂ Computed by the classical method together with the expectation that the 
ring members will vanish at the optimum. 

'̂ alue of the dual objective function. 
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Fig. U.IO. Schematic drawing of optimum network dome. 
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Fig. h. 11. Half cross-section of surface on which the nodes lie. 
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The volume of the ring may he taken into consideration, as suggested 

in chapter three, if it is desired to minimize the total volume of the 

structure including the volume of the dome (totally in compression) and of 

the ring (in tension). 

The loads on the ring are the thrusts (X̂ ) at each node 0. Conse­

quently, applying the theorem of zero absolute potential energy to the 

ring alone, its volume may be written as, 

or  ̂I Xgro 1 (4.32) 

where the use of f̂  implies that the ring will be designed to be uniform­

ly stressed to f̂ , the allowable tensile stress for the material of the 

ring. 

The total volume of the structure, V̂ , is 

V = V + V 
T D R 

where is the volume of the dome exclusive of the ring and is given by 

equation 4.l8. Thus, using equations 4.18 and 4.32, the total volume of 

the structure is 

"T ' rj  ̂Vi' + 11 ̂o'-o I 

Assuming that f̂  = f̂ , this last equation can be written as 

\  ̂ (4-33) 

Equation 4.33 is the objective function to be minimized for minimum vol­

ume of the entire structure. It differs from the objective function used 

earlier (not considering the ring) only in that the X̂ r̂  term is now 
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counted twice. 

The dome with the tension ring will be different from the one just 

optimized only in that the ordinates will be increased to reduce the hori­

zontal components of the 'thrusts due to the double weighing of such hori­

zontal forces in the optimization function. Consequently, the dome with 

the tension ring is also expected to be of least volume when the compres­

sion ring members in the lattice disappear. 

Table 4.3 shows the results obtained when using the classical method 

and the computer assisted nonlinear programming method. 

Lamella domes 

The framing geometry of a network dome is similar to that of a 

lamella dome with horizontal rings. Such a lamella dome is in reality a 

many sided network dome. Thus, the same formulation used above would be 

applicable to a lamella dome. 

Lamella domes are reported by Makowski (l8) to be very efficient 

structures for spans of up to 1,200 feet, or possibly even more, and which 

can easily support, mainly by axial forces, any large concentrated loads 

that they may be subjected to. Loads imposed on the domes are rapidly 

dispersed throughout their framework and this, according to Makowski, 

"leads to considerable saving of material." 

Paraboloidal Lattice 

General 

In this example, a paraboloidal dome, with a statically indeter­

minate lattice geometry, will be optimized by the shell analogy method. 
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Table h.3- Least volume network dome with tension ring 

Initial Feasible 
Variable Point* 

Computer Found 
Optimum̂  

Expected Opti' 
mum̂  

X(l) = 0.4 0.51170981 0.51158205 

X(2) = 0.8091 1.0348285 1.0348259 

X(3) = 1.117 1.4288139 1.4290962 

X(4) = (zil/rj) 1.261 1.6124373 1.6128359 

X(5) = 1.279 1.6357160 1.6360516 

X(6)  = 50.27 39.293727 39.305363 

F(X) = 111.74 157.19429 157.22145̂  

G(X)* 157.20244 

X(7) = 0.0 0.0001699 0.0 

x(8) = 0.0 0.0002445 0.0 

X(9) = 0.0 0.0005482 0.0 

X(10)= 0.002 0.0042325 0.0 

&Based on expected solution. 

Îterations = 137- CPU Time = 88.5 sec. I/O Time = 177-0 sec. 
Region Used = l62K. Largest slack in the constraints = 6.76 x 10"̂  . 

•̂ Computed by the classical method together with the expectation that the 
ring members will vanish at the optimum. 

'̂ If the tension ring is present but not considered, the corresponding value 
for the total volume of ring and lattice would be 166.75853. 

G Value of the dual objective function. 
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The dome chosen for the exançile is shown in Fig. 4.12. It has the 

geometry of a Schwedler dome with two sets of diagonals. However, in a 

Schwedler dome the diagonals are tension diagonals designed to buckle and 

be inactive under compressive stresses (Benjamin (3)). Here both diagonals 

will be designed to carry compressive stresses to achieve a homogeneous 

state of stress in the dome. This may not be practical in a real life 

design but is done here only to demonstrate the shell analogy method, and 

to further show that a hyperstatic and a static structure have the same 

least volume when optimized for the same system of loads. 

The dome will be optimized with respect to a total load, W, distrib­

uted on the horizontal projection. Since it is to be optimized by the 

shell analogy, the load allocated to each node will not be computed but 

instead the same distributed load will be assumed to act on the analogous 

shell thus satisfying correspondence of loads. 

It is to be noted that, under symmetrical loads the diagonals of the 

structure to be optimized carry no stress (Benjamin (3)). Thus, as the 

dome is to be optimized for symmetrical loads (uniformly distributed on 

the horizontal projection), the proper procedure for an absolute minimum 

would be to remove the diagonals and optimize the resulting fixed-jointed 

Schwedler dome. Intuitively, it may be expected, as was the case with 

the network dome, that the global optimum would then occur when the ring 

members all vanish leaving only the free-standing ribs joined at the crown 

of the dome. For the purposes of this example, however, the diagonal and 

ring members will not be allowed to vanish, and the nodes of the structure 

will be assumed to lie on a paraboloidal surface. The optimum to be 
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Shaded area is isolated in Fig. k.l3< 

Fig. 4.12. Dome to be optimized. 
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found will then be optimum among all similar domes. 

Formulation and solution by shell analogy 

Since the shape of the dome is assumed to be paraboloidal, the analo­

gous shell will have to be a paraboloidal shell, thus satisfying the geo­

metrical requirements for analogy. 

The relationships between the dome bar forces and the shell tractions 

are not needed initially since the shape of the lattice and of the shell 

have been already selected to be paraboloidal. These relationships will 

be eventually needed to verify that it is possible for the lattice to be 

homogeneously stressed while satisfying the required bar force-shell 

traction relationships. The relationships will nevertheless be developed 

now using the analogous portions of the lattice and shell shown in Fig. 

4.13. The portion of the lattice corresponds to the shaded portion in Fig. 

k.l2. In Fig. 4.13 the loads on shell and lattice are omitted for clarity. 

The shell must be analogous to the lattice in a geometrical sense and with 

respect to all force resultants. Geometrical analogy is satisfied by the 

assumption of paraboloidal shape for both, and by insisting that a, b̂  and 

b̂  are the same lengths in both portions which are similarly situated on 

the respective structure. Force analogy must be achieved for the loads on 

both portions and for the resultants of the bar forces and of the shell 

tractions. 

For load analogy the load on the node of the lattice must equal the 

total load which is assumed evenly distributed (on the horizontal projec­

tion) and acting over the surface of the shell. 

For lattice force and shell traction analogy the resultants in the 



www.manaraa.com

120 



www.manaraa.com

121 

meridian ((ji) and ring (0) directions of both must be equal. Mathematical--

ly, 

r̂b-i + 2 Tdj cos bj, 

r̂b̂  + 2 cos = N,j,̂  b̂ , (4.34) 

and Tj,g + sin sin = % a, 

where the subscripts rb, d and rg refer to the meridional ribs, the 

diagonal and the ring members, and the subscripts 1 and 2 are used to de­

note the members or forces above and below the center of the portions 

respectively. 

Satisfaction of equations 4.34 with a homogeneously stressed lattice 

implies that both and Ng must be compressive in the final shell. No 

other requirements arise and the ratio may vary in any fashion 

throughout the shell. 

Consider now the analogous paraboloidal shell. The shell is shown 

in Fig. 4,l4. Since the load is axial,]y symmetric, for convenience, a 

circular cylindrical coordinate system will be used with the origin at 

the zenith of the shell as shown in the same figure. 

The equation of the shell is 

z = 2̂  (r̂ /r̂ )̂ and dz/dr = 2 ẑ (r/r,ĵ )̂ (4.35) 

where r̂  is the radius of the shell at the supports (a given constant), 

and 2̂  is the height of the shell, constant for any one shell, but in 

reality the variable with respect to which J F̂ .r\ will be minimized. 

The load intensity (p) on the shell, per horizontal unit area, is 
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Fig, I+.1I+. Analogous paraboloidal shell. 
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where W is the total load. Consideration of the vertical equilibrium of a 

free body diagram of the portion of the shell above a cutting plane at an 

arbitrary radius, r, yields 

N. = Wr 
2 r̂ ŝin 4» 

The radii of curvature, and Rq for the shell are 

R . = —-— , 
9 sin <P 

and 

or 

R rf) = 
_ {1 + (dz/di)̂ }̂ /̂  

d̂ z 
dr̂  

R. 
<!) 2z^ coŝ * 

Considering the equilibrium, of a small section of the shell, 

+ £6 = z 
Be 

(4.37) 

(4.38) 

(4.39) 

where Z is the intensity of the load orthogonal to the middle plane of 

the shell, considered positive when inwardly directed (since here and 

N aire positive when compressive). In this case, 
6 

Z = p coŝ (}>. (4.4o) 

Using equations 4.38 and 4.4o in equation 4.39, N. can be expressed as 

W cos (j) 
(4.41) 

Kote that and Kg are both compressive and neither changes sign for 

any paraboloidal shell (since 4)̂ /2 always). Were Ug to become tensile 

at some point, then, after  ̂F̂ .r\ is minimized, it would be necessary to 

insist that at the supports be limited to be no larger than the 

which causes Nq = 0 or else a homogeneously stressed structure would 
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not be possible. 

For the shell, I may be expressed as 

Î  =  I  Vb  + I  -  ' " i )  

? W 
= N, (cos 0 ) 2% r % + -—z- (z% - z) 2it rdr 
% b b j 

0 
where the subscript b refers to the variables evaluated at the support. 

Using equations 4.35 and 4.37 this reduces to 

I = -ï£à_ + S2i rtr - !̂ ) dr. 

^ h V J "o 

Noting that tan 4» = dz/dr, evaluating the latter (equation 4.35) at 

r = r̂ j and evaluating the definite integral, 

I = I- + y . 

Letting the derivative of J F̂ .f\ ivith respect to equal to zero, it 

can be shown that for minimum ̂  3\.r\, 

ẑ  = r-Q. (4.43) 

The shape of the resulting shell is as shown in Fig. 4.l4 -which was 

purposely drawn with z. = r . 
b D 

At the supports, from equation 4.35 

tan = 2 
0 

and consequently, cos , 
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Therefore, from equations ̂ .37 and 4.4l, 

_ 6" w 
N 

and N 

l+TT r> 

W 

b '•/s n 

Applying equations 4.3̂  at the supports. 

(4.44) 

and. 

T , + 2 T, cos a 
rbi d̂  

d̂i 

= /3W .1 
4 irr, 

b 

W . a, 
(4.45) 

4/5 7rr̂  2 

where the notation is as used in equation 4.34. The last of equations 

4.45 results from the last of equations 4.34 where Tjg = Tĝ  = 0, and 

a has been adjusted to be consistent. Equations 4.45 imply that the 

nodes are very close to each other and thus N,j,̂  ~ Assuming further 

that o =45 and thus 
4 

sin a = cos 
âi - — «a, 

while a/2 = bj/2 , 

results in the following values 

m _ W a 

= 1//2, 

and 

4»̂  

W b, 

Trr. 

••rbi 
nr. 

(4.46) 

Equations 4.46 show that it is possible to have correspondence of forces 

and shell tractions without violating the requirement that all members 

of the lattice be homogeneously stressed (all in conipression). Equations 
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h.k6 or their equivalents could be written for aH members. If all the 

members are then proportioned (by selection of their areas) to be stressed 

to f̂ , then the resulting design would be a least volume design for the 

class chosen (nodes lying on a paraboloidal surface). Furthermore, this 

would be a statically indeterminate structure of least weight in its 

class. 

This is, however, only a solution and not a unique solution. Other 

solutions are possible of equal (but no lesser) volume. IHois will now be 

demonstrated. 

Equations were written assuming that there would be no conipres-

sive ring at the support level. There is no mathematical reason to pre­

clude the use of such a ring (even though it may not be practical). Re­

writing equations U. U5 with such a ring provided. 

(4.47) 

and, T + T, sin a, = _îi • ̂  
rg <ii di k/f 2 

D 

Equations h,k7 can be satisfied (thus insuring that the analogy holds) 

with any arbitrarily selected value for T̂  provided it is less than the 

value given by equation h.kS (if it is greater then T̂  ̂would have to be 

negative and thus a tensile force). Assuming, for exançle, that T̂  = 0 
1 

yields the solution 

/3'Wbi T 
 ̂r, b 

and T-g. = 
 ̂ 8/5 «b 

(hM)  
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Similar equations can be written at every node always assuming that the 

diagonals vanish. 

The solution indicated by the typical equation 4.48 would have the 

form of a Schwedler dome without diagonals and would be a statically deter­

minate solution. Since it satisfies the correspondence of forces with the 

shell, the shell analogy solution applies. The removal of the diagonals 

with the corresponding increases in the volumes of the ribs and ring 

members does not alter ̂  nor disturb equilibrium. Thus, if the ribs 

and rings of this second solution are also designed to be fully stressed, 

the volume of this second structure is also a minimum (of the same magni­

tude of that of the first structure). 

Consequently, this is a demonstration that statically determinate and 

statically indeterminate structures, when optimized are fully stressed, 

and that when supporting the same loads, their least volumes are identical. 

Paraboloidal Shell 

In this example the geometry (height-to-span ratio) of a paraboloidal 

shell will be optimized for least volume of the shell, with and without 

the consideration of a tension ring. 

Least volume without tension ring 

From the previous exanç)le the following equations, applicable to the 

shell, are repeated for convenience, 

z = ẑ  (r2/r̂ 2), dz/dr = 2 z% (r/r̂ )̂, (4.49) 
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K = -— , 

-h sin (j) 

N = ^ cos ^ , 
e l+TT 

(4.50) 

and, y F..r. = 2i_ + z, } . (̂ .51) 
L 1 1 2 &b D 

It can be shown that >_ Ng for all (j), the equality holding when 

(j) = 0 (zenith of the shell). Consequently, this shell belongs to level 

I in the hierarchy of structures (i.e. N* can be such that o = f but 
r <p C 

cr̂  fg and is compressive everywhere). Thus, to obtain a global mini­

mum for the given load (of total value W, distributed over the horizontal 

projection) it would be necessary to first change the shape of the shell 

to make = f̂  everywhere, then minimize and finally check 

that  ̂ been unduly increased in forcing a g = f̂  (moving 

from level I to level III in the hierarchy of structures). 

Interjection of the requirement that f̂  would require a 

change in shape and lead to differential equations that can only be 

integrated (to obtain the equation for z) numerically. The optimization 

would not yield a closed form solution. 

Therefore, to avoid that coizglication, the exanç>le, as its title 

inçjlies, will only seek to obtain a paraboloidal shell of minimum volume 

(among all paraboloidal she! Is). 

The volume of the shell, using the theorem of zero absolute potential 

energy, can be expressed as 

V = — I F^.r, _ dV (U.52) 
fr f_ r̂ 
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where the use of f̂  implies that the thickness of the shell, t̂ , will be 

so selected that o = f that is 
* ° a 

tj, = -ji . (4.53) 

Using the first of equations 4.50, 

W ̂  _ (4.54) 
- - 2 2 fçjTfr̂ ŝin (}) 

To obtain the least volume it is necessary to minimize the entire 

right hand side of equation 4.52. 

Equation 4.52 can be rewritten, by making use of equations 4.50,4.51 

and 4.54 as 

V = JL/ + 2, } _1 I ^ GOS 4, ^ 2 fçTT rb^sin 

2f̂  Zh b ÇtTzT W r 

Simplifying, 

- c  ̂̂  

V = «-{ Ïè! + z ) - f (4.55) 
2f^ z, b J 2 z, r 

Since the shell is axially symmetrical, dV may be replaced by its equiva­

lent expression, 2nrtp d£. where di is the differential element of length 

along the meridian, and noting that 

a. = 
cos (j) 

equation 4.55 becomes 

_ 2 

C J D 
0 

 ̂'"b * (t̂ JSr. (4.56) 
2 
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where the appropriate limits of integration have been added. 

Using equation 4̂ 54 to replace t̂ in equation U.56, and simplifying, 

2 % 
= JL JL dr. (4.57) 

 ̂= 2f; ̂  ̂ "b > - 2f̂  j dr-

0 
Evaluating the integral and collecting terms, 

 ̂ ' aï  ̂  ̂' (t.58) 

Letting 3V/ 3z = 0 for minimum volume, 
b 

z, = —r . (4.59) 
d  

Expression if.59 is the solution desired. The shape of the resulting shell 

is shown in Fig. 4.1$. Its volume is 

V = (4.60) 

Consideration of tension ring 

To optimize the total volume of the shell with a tension ring, it 

suffices, as discussed in chapter three, to double the tern in ̂  

that reflects the contribution to it of the horizontal forces along the 

periphery of the shell. 

Doing so, equation 4.57 yields 

or, 

V = 
2f 2z  ̂  ̂̂  ̂ =b (4.61) 
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I 
I 
• 

/2 r, 

Fig. I+.15. Optimum paraboloidal shell without tension ring. 
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Again letting 3V/ 32̂  = 0 for minimum volume, 

 ̂  ̂or» \ = 1-225 r̂ . 

The resulting shell is shown in Fig. 4.16. 

The volume of the shell-ring structure is 

C' 

where the * indicates a minimnm volume and the subscript S-tfi implies 

minimization of the entire shell-ring structure. If only the shell had 

been minimized (either ignoring the ring or making the as sung)tion that the 

supports could absorb the horizontal thrusts) the volume, with similar 

notation can be expressed as (equation 4.6o) 

* Wrx 
Vg = 2f~ ̂  * (̂ *63 ) 

If a ring was present but ignored, the volume of the ring alone can be 

computed from its own \ F\.r\ as 

V„ = JL i ÏÈ! ), 
® % 

which, since = r̂ / /2 (equation 4.59), becomes 

Vg = ̂  t/i" (U.61+) 

The total volume of the structure with a ring but where only the shell was 

optimized is, 

T&+a =T& + T'a 

or, adding equations 4.63 and 4.64 
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Fig, it-.16.  Optimum paraboloidal shell with tension ring. 
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Con̂ aring equations 4.6$ and 4.62 shews that by considering the ring 

in the optimization process the volume was reduced by 13.from the 

volume of the shell which was optimized while ignoring the tension ring. 

At the same time, the rise was increased from 

(optimization on shell only) 

to ẑ  = r̂  1/3/2 (optimization on shell-ring) 

representing a 22.5̂  increase. 
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CHAPTER FIVE - SEQUENCE OF ALTERNATIVE DESIGNS 
FOR SINGLE SYSTEM OF LOADS 

General 

The purpose of this chapter is to explore the changes in least 

volume which occur, when supporting the same loads, as a transition is 

made from a structure of one hierarchical level to one of another level 

(see chapter two). 

To do so, three different latticed structures and their correspond­

ing analogous shells are optimized. Their volumes are then compared. 

Load System 

Assume that it is required to synthesize a structure to support a 

ring of vertical loads. The supports are also to be disposed in a circu­

lar plan and can absorb the thrusts required. It is permissible to raise 

the ring load at any desired height above the supports. Such a load sys­

tem is shown in Fig. 5.1. 

First Lattice Alternative - Conoidal 

For the first alternative structural system, consider the structure 

whose cross-section is shown, schematically, in Fig. 5.2. It will be 

optimized by the classical method first. 

In Fig. 5.2, the total load, W, is divided into 2n loads of magnitude 

P acting at the top nodes. There are n "frames", similar to the one shown, 

and arranged at an angle of 360®/2n from each other. Lines 1-1 and 2-2 

indicate a radial force applied at points 1 and 2 and do not necessarily 
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W 1 

Fig. 5.1. Load system. 

^ a  — - i  ^ 0  

Fig. 5.2. Schematic drawing of first alternative. 
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imply a member directly joining opposite points 1 and 2. In the actual 

structure, these radial forces could be provided by either compression 

rings or by members directly joining opposite nodes. 

The position of point 1 could be restricted if desired. Such res­

triction, however, vould lead to the synthesis of a structure of least 

volume within that class (i.e. with restricted position of point 1). To 

allow as much latitude as possible, the position of point 1 will be con­

sidered as free to vary. 

It can be shown (from a consideration of the number of variables 

and of the equations of equilibrium, as discussed in chapter three) that 

the optimization of the structure of Fig. 5.2 is a problem with three 

degrees of freedom. Consequently, all the constraints of equilibrium 

must be used to express ̂  F\.r̂  in terms of only three variables prior 

to optimization. 

For convenience, the following relationships are written, 

%an 0 = z/x , 1 
il 

tan , 

+ *2 = -b - ̂ a ) 

z ,  +  =  2  

(5.1) 

and, XQ - , (5.2) 

where all the variables are defined in Fig. 5.2. 

Using the theorem of zero absolute potential energy, and the concept 

of variation of Y F̂ .r̂ , the objective function for the problem at hand 

can be written as. 
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f  (  i h - h  > L  (5.3) 
min min 

Classical method 

Using the equations of equilibrium,as indicated above, and selecting 

, $ and (Jî as the variables to be retained, the objective function can 

be written as, 

Vi . 
min 

= + =1 taa * + (fb - fa " *1) tan 

It is not necessary to consider any other constraints because the 

assumption that the structure is homogeneously stressed renders the struc­

ture statically determinate (in unstable equilibrium with the given loads, 

for computation purposes). 

The three additional equations needed to obtain a unique and optimum 

solution are: 

sin = EsE. [ —r. csĉ 4> + X. seĉ O ] 
3» f D I 

c 

3V . 

= 0 , 

SÎB. = 2nP [ ) seĉ ç̂  ] = 0 
3 ̂ 

3 V 
and Si£. = [ tan <? - tan ] =0 

The third of these equations can be satisfied only if 

4 = , 

and the second implies, since sec'i>̂   ̂0 , that 

= fb - fa -

(5.5) 

Consequently, from equation 5-1, X2 = 0 
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These results are consistent with each other and hence can be sat­

isfied simultaneously. They imply that for least volume, member 0-1-2 

is straight and the force represented by line 1-1 vanishes. Furthermore, 

the significance of the location of point 1 vanishes and point 1 can be 

considered to coincide with point 2. 

After thus satisfying the last two of equations 5«5, it is necessary, 

for a global minimum, to satisfy the first. 

It can be verified that the first of equations 5-5 can be satisfied 

if 
tan 4» = / 

or tan C> = / r̂ /(r̂ -r̂ ) (5.6) 

which can also be expressed as 

tan $ = (5.7) 
/I - (r̂ r-g) 

Then, using the first of equations 5.1, since z = , 

z = /(r-g - ra)ry , (5-8) 

or, z = , (5-9) 

and, using equation 5'̂ , 

V_^_ = ^ [ r._/(r._ - r„)/r^ + /(r^ - r^)r^ ] 

c 
min 7~ *• "b'̂ 'b "a""b ' '""b "a/"b •* » 

where 2nP has been replaced by its equivalent, W. The latter expression 

reduces to 
' '5.10) 

c 

Equation >.11 can also be expressed as 
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Vmin = ̂  i ̂  + z/fa } • <5.12) 
c 

vith the appropriate values used for $ and z. All these equivalent 

expressions for V . represent the total volume of all the inclined legs 
mm 

and the top compression ring, and can be verified by actual computation of 

x,he volumes of individual members when stressed to f̂ . The resulting 

structure is shown in Fig. 5-3-

Thus, expressing ̂  P̂ .r; in a sufficiently general form resulted in 

a transformation from the class of structures schematically shown in Fig. 

5.2 to the more efficient class arid global optimum of Fig. 5-3, wherein 

the legs of the tower lie on the surface of a frustrum of a circular cone 

with bases of radius r-̂  and r^^, and height z. 

Shell analogy 

The shell analogous to the structure of Fig. 5.2  would be one com­

posed of two frustrums of cones with stiffening compressive rings at 

levels z,, where the two frustrums meet, and at Zg, the top of the top 

frustrum. For simplicity, only the shell analogous to the resulting struc­

ture of Fig. 5.3 will be considered. Shown in Fig. 5.4, such a shell con­

sists of one frustrum of a cone, geometrically similar to the lattice, and 

with a stiffening compressive ring at the top level. 

Xotê that for load correspondence between the lattice and the shell, 

the shell load, as shown in Fig. $.4, is a circular line load of magnitude 

Pg which is 

p = JL_ 
s 2-r. a 
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z = /(rb - ra)r5 

Fig. 5.3 .  Resulting structure, a global minimum. 

r. 

Fig. 5.U. Analogous shell in form of truncated cone. 
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Referring to Fig. 5*5» correspondence between the shell tractions 

and the bar forces of the lattice dictates that, if is the force in 

one of the inclined legs, then 

where N, is the shell traction in the meridian direction, a function of 
<? 

r so that T. remains constant. Since the lattice has no ring members 

(except at the top). 

Ng = 0 (5.13) 

on the shell, and 

where T is the force in the ring members of the lattice, and F is the 

force in the compressive ring of the shell. 

Referring to Fig. $.4, 

I F̂ .r̂  = Np(2TTr̂ )r̂  + Wz ($.lA) 

where Il<„ is the horizontal component of the shell tractions in the 

meridian direction at the supports. 

It is now necessary to use the equations of equilibrium of the shell 

to reduce the independent variables in equation 5-1̂  to one. In this 

case, z will be retained. 
Ny 

Froa geometry, Ng = $ 

where % is the vertical component of and 

tan 4> = z/(r-jj -r̂ ) , 

while, from equilibriiam of vertical forces, 

W % = 
27rr̂  
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Pc = W/(2Tirg_) P = W/ 2n) 

a. Shell element. b. Lattice element. 

Fig. 5.5 .  Analogous elements of shell and lattice. 
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Using these last three equations in equation $.14, 

IF..?. = W + 2 } . (5.15) 
' ' i l  ^  z  

Letting 3{I F..r.} 
i—i_ = 0 , 
3z 

for minimum I î'̂ i» z =• /(r̂  - rĝ )r̂  , (5.lé) 

which, by comparison, is seen to be identical with equation 5.8 for the 

lattice. 

Continuing with the analogous shell, the volume of the lattice, 

c 

and, using equation 5>16 into 5-15, equation 5-17 becomes 

"imln ° ''b ' <5-18> 

which is seen to be identical to equation 5-10. 

Thus, using an analogous shell, the form of the lattice structure for 

minimum lattice volume was found by minimization of \ F\.r̂  for the shell. 

Correspondence of bar forces and shell traction resultants 

In this case, since a solution for the lattice was already available 

to compare with the shell analogy solution, it is obvious at this point 

thaô the analogous shell yields the correct solution. In the more general 

case, it would be necessary to confirm that the conditions for the bar 

forces and shell traction correspondence are satisfied. The conditions 

In this case are that K, be an inverse function of r so that be con-
<P L 
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stant, and that Nq = 0. To demonstrate that these conditions are 

satisfied, the state of stress in the shell will be investigated. 

S-umming forces in the vertical direction when considering a portion 

of the structure above any arbitrary r, yields 

2%r(N̂ sin = W , (5.19) 

= acr Bin * • (5.20) 

Bote that, as expected, is inversely proportional to r. Since 4) is 

constant ( o = $ ), T will be constant. 
XJ 

Letting t̂  be the thickness of the shell (a function of r), 

% " 2nr t̂  sin 4> ' 

Considering a small element of the shell as in Fig. $.6, and 

summing forces in a direction perpendicular to the shell, yields 

Ng = 0 

as expected, and consequently, 

Og = 0 . (5.22) 

This result could also be'obtained by use of the similarly derived 

expression (Timoshenko and Woinowsky-fKrieger (38)), 

+ '"«e/Se =  ̂ • (5-23) 

where R, and R. are radii of curvature of the shell, and Z is the inten-
9 u 

sity of the load per unit area in a direction perpendicular to the middle 

p l a n e  o f  t h e  s h e l l .  I n  t h i s  c a s e ,  R ^  =  «  a n d  2 = 0 .  

Now consider the stiffening ring at the top of the shell. The re­

quirement for the ring can be recognized by referring to the free-body 
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Small element of the shell 

S-

Fig. 5•7- Free-body diagram of structural element. 
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diagram of the structural element shown in Fig. 5.7 .  In that diagram the 

forces are shown in the actual directions in which they act and not in ac­

cordance with any sign convention. 

For equilibrium, the radial component of F̂  (the force in the ring) 

must equal the horizontal component of . (In Fig. 5.6, Ng is not 

shown since, as derived above, it is everywhere equal to zero). 

Summing forces in the radial direction, 

2 Fg sin ̂  = (N̂  cos #) r d8 

or, since d0 can be taken as small as desired, 

F̂  = (N̂  cos <}))r . (5.24) 

.0 

Using expression 5«20 in equation 5-2U, and noting that <J) = 4> , 

or, expressing tan * in terms of r̂ ,̂ r̂  and z, 

 ̂"(r, - rj (,.26) 
" 2Trz 

To complete the demonstration of the correspondence of bar forces 

and shell traction resultants, it now needs to be shown that T , the 
R 

lattice ring member force, is equal to F . To compute T , refer to the 
R R 

lattice element shown in Fig. 5.5. Summing forces in the radial direction, 

2 TR sin (~) = TL COS i , (5.27) 

2 % Sin (L) = 

and, upon expressing tan $ in terms of r̂ ,̂ r̂  and z. 
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2Tj,sin(̂ ))= . (5.29) 

If n/(2n) is small (i.e. n is large), equation 5-29 reduces to 

T. = . (5-30) 

which, by comparison with equation 5-26, demonstrates that = F̂ . 

Thus, the lattice and the shell differ in that the shell is loaded by 

a linearly distributed load, while the lattice is loaded discontinuously 

at 2n points. The larger 2n is, the closer the shell and lattice approx­

imate one another. 

Compatibility of deformations for this system of loads need not be 

considered in the shell analogy since the geometry of both the lattice 

and the shell are described in their respective deformed states (at which 

time they are defined to be geometrically similar). Compatibility of 

deformations would have to be considered in the analogy, if it were 

desired to use the analogy to determine the stresses due to other loads, 

or due to the removal of the design load system. (For example, if the 

residual stresses due to the removal of the loads on the lattice were to be 

determined by analysis of the residual stresses on the shell-ring struct-

ture.) In such a case, additional requirements on the correspondence of 

the shell-ring and lattice material properties would have to be introduced. 

For examples of such requirements see Benjamin (3) or Parikh and Norris 

(26) .  
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Applicability of theorem to the shell 

The theorem of zero absolute potential energy, equation 2.10, 

for this structure, can be written as, 

dVg + /og dVg + /og dVg = I F..r. , (5.31) 
S S R 

where the subscripts S and R refer to the shell and the compressive 

ring respectively, and other symbols are as previously defined. 

Considering the result of equation 5.22 (Og = O), it is obvious 

that > Og and that for least volume within this class of struc­

tures, t̂  should be proportioned by use of equation 5.21 such that 

= fg everywhere. Therefore, for use in equation 5.31» 

% = ^ . 
r 

0 = 0 
6 ' 

Fp 
and o = _il 

" 4; 

where A is the cross-sectional area of the ring. With these substitu-
R 

tiens, equation 5.31 becomes. 

= Z Fi-fj • (5-32) 
S r R 

Using equations 5.25 and 5.20, 

i2^;F^7irfs * 12.̂  L r» ' ̂ • <"3) 

The integration of the second term of the left hand side can be easily 
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made, noting that all terms are constant and that, 

/ DV̂  = AP 2TTR̂  . (5.34) 

The integration of the first term can be carried out if dVg is expressed 

in terms of r, t̂  and 4". This can be done, referring to Fig. 5.8, by-

noting that. 
/ dV = / 27rr t d£ , 
S A  ̂

and, d2 = 
cos lj> 

 ̂27rr t. 

® ''a 

Using equations 5.34 and 5.35 in equation 5.33, this latter one becomes 

Wr 
f °r W dr ; + """a _ y p 
 ̂(cos 4Jsin 4) •' tan (}i i* i 

Integrating, 

W-r- W-r 
* • '5.36) 

(cos 4i)sin (j) (cos (j))sin <p tan 

But, from geometry, since * = $, 

tan (p = 
b̂ " ̂a 

(r-D - ra)z 
and, (cos *)sin * =  ̂  ̂)% + • 

Therefore, equation 5.36 can be rewritten as 

b a 
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Fig. 5.8 .  Element of integration. 
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Collecting terms and simplifying, this last expression becomes, 

(r - r )r 
__b____a__b + zj = I . (5-37) 

which can be seen to be an identity by comparison with equation 5.15. 

It is thus demonstrated that the theorem of zero absolute potential 

energy (equation 2.10, or its equivalent, equation 5.31) holds. It is 

noteworthy that the derivation of equation 5.37 did not assume any par­

ticular value for a or a and thus, the applicability of equation 2.10 
R 

is demonstrated regardless of whether or not t̂  and are designed so 

that a, and are constant and equal to f . 
9 n c 

Volume of analogous shell 

It is possible to make and constant and equal to f̂  by letting 

& = V̂ c • = K*/fc 

where and can be expressed in terms of W by the use of equations 

5.26 and 5.20» respectively. In such a case, 

= Ï . 

and, since the total volume, V̂ , of the structure is, 

o K 

it follows that,  ̂I 
c 

Thus, it is apparent that, since the entire shell-ring structure is 

uniaxially stressed to fg, the shape that minimizes ̂  F̂ .r̂  will also 
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minimize the volume of the shell-ring. Furthermore, the volume of such a 

shell-ring structure will be identical to that of the lattice. Consequent­

ly, for the shell, as for the lattice, if V . is to be achieved, 
min 

or. 

and. 

or 

z 

z 

/ . 
min 

V . min 

•'''b -

It • 

(5.38) 

(5.39) 

(5.40) 

with the proper values used for $ and z. 

Shell with plate in lieu of compression ring 

If the compression ring of the shell-ring structure is replaced with 

a biaxially stressed circular plate, then, according to the theorem of zero 

absolute potential energy, if the subscript P is used to denote the plate. 

and if V is the total volume of the shell-plate structure, 
b+ir 

Vp = . f, yp - p 
(5.41) 

This last equation indicates that the total volume of the structure is 

reduced by the second term of the right hand side when the plate is used, 

or. 

ŝ+p ~ Vg+a - ̂  /cp (IVp , 
C P 

since ̂  is not changed by the use of the plate. 

To demonstrate this, let the plate also be designed so that Op = f̂ , 

in which case, the second term of the right hand side is simply the volume 
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of the plate, or Ŝ+P ~ Ŝ+R " ' 

and Vg + Vp = ~ ̂ P ' 

and therefore, Vp = . 

Thus, to demonstrate the applicability of equation 5.4l, it is sufficient 

to show that when a = c , V =—V. 
R P P 2 R 

If a ring and a plate are subjected to the same distributed compres­

sive load per unit length, then, for the ring, 

R̂ = AR 

where Ap = Fp/op , 

and, since Fp = N̂ r̂  ̂, 

Vp = 2%r2 (Njj/Op) . (5.1+2) 

For the plate, Vp = î |(tp) 

where tp = Np/op , 

and therefore, Vp = T:r| (Np/Op) , (5-̂ 3) 

Comparison of equations 5.42 and 5-̂ 3 shows that Vp =  ̂Vp, as expected, 

when Op = Cp. 

It is to be noted that minimization of  ̂F\.r̂  alone would not 

yield the shape for minimum volume of this shell-plate structure. The 

entire right hand side of equation $.41 should be minimized for that pur­

pose. If this shell-plate structure had been chosen as the analogous 

shell for the lattice, minimization of  ̂F̂ .r̂  would still have given 

the shape for minimum lattice volume. 
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Second Lattice Alternative - Hyperboloidal 

Geometry of the lattice 

The global volume lattice for the system of loads of this 

chapter is given by the conoidal lattice of the first alternative synthe­

sis. Such a structure, however, may not be acceptable because of the 

long unsupported legs, and it may be desirable to explore another class 

of structures. 

A different class of structures is shown in Fig. 5.9 ,  where only some 

of the members are shown for clarity. The class depicted therein is one 

with clockwise and counterclockwise inclined legs that meet in pairs at 

the top and bottom levels, as well as at points in between. The struc­

tures can be characterized by r , r and z, as before, plus n and m, 
a b 

where n is the number of nodes around the top level (or the number of 

supports), and m is the number of spaces between the two nodes of a pair 

of legs. If a is the angle subtended by radii drawn to adjacent nodes, and 

g is the angle subtended by two radii drawn to the two nodes of a pair of 

legs (see Fig. 5.9), then 

a •=  ̂
n 

" = m ' 

and 3 = 
n 

(5.44) 

One limitation of this class of structures is that, if an all com­

pression structure is sought, then, 

Y 1 n/2, 

where y , as shown in Fig. 5.9, is the angle between the extension of the 

radius throû  one of the top nodes and the horizontal projection of the 
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a = — 
n 

a = È 
m 

3 = iHEi 

a. Top view. 

P = W/n 

b. Side view. 

Fig. 5.9. Another class of latticed structures. 
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legs which start at that node, (if y > T/2 were allowed, the legs would 

pass under the circle with r̂  as the radius and the top ring would he in 

tension). 

From geometry, d = r̂  ̂cos B/2 , 

um 
or, d = cos — , 

and tan $ = 

(5̂ 5) 

rjj - d ' 

where d and $ are defined in Fig. 5.9. 

Classical method 

Using the generalized expressions developed in chapter three (equa­

tions 3.7 through 3.10), 

and, since from equilibrium of vertical forces, Z = P , while ̂  P = W, 

W r 1 
using equation 5.4$, V . - i : z 1 

min -L Ç z TTiT n 

For V̂ , letting = 0 , 

z = /(r̂  - d)r̂  , 

and, = Î V(r̂  -d)r-̂  . 
(5.46) 

iUote that V̂ in is a function of m and n by virtue of equation 5-̂ 5. 

If this class is preferable, it would probably be because of the shorter 

lengths of the portions of the legs between intersections. For the majc-

inrum number of intersections with a given n, m should be as large as 

possible. The magnitude of m is restricted by the requirement that 
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Y ̂  11/2 , as mentioned previously. If m and n are properly related (or 

if n is veiy large), then y can be made equal to Tr/2. In that case. 

and 

cos g/2 = 

d = râ 

Then, for , tan $ = 

and 
min 

Zirr̂ TTÏ̂  

z = - r̂  , 
D a 

2W 
- r̂  

(5̂ 7) 

In terms of r and r, /r , 
a 0 a 

and 

tan <*> = 

z = 

man 

/ (r /r - 1 
b a 

Wr r,/r 

M îH - } 
c G. 

(5.48) 

Shell analogy 

The general equation for the hyperboloidal shell of Fig 5.10 is. 

 ̂̂ = 1 

If a b , the surface is a elliptical hyperboloid since for any constant 

z, X and y describe an ellipse. If a = b = r̂  , then the equation of the 

hyperboloid of one sheet becomes. 

5 -? = 1 
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B 

Fig. 5.10. Hyperboloidal shell. 
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When y = this expression reduces to 

from which, z = ± ~(x) 

This last expression is the equation of two straî t lines, shown as 

AB and AB* in Fig. 5.10, with slopes of c/r̂  and -c/r̂ . Consequently, 

the surface of Fig. 5.10, a circular hyperboloid of one sheet, can be 

generated by rotating a straî t generatrix around a circle with radius 

r̂  ̂at 2=0; the generatrix being tangent to the circle and inclined 

at a slope of c/r̂  or -c/r̂  in the vertical plane in which it lies. This, 

then, is the surface which would be occupied by all the inclined legs of 

the hyperboloidal latticed structure eis n ̂  . This hyperboloidal shell 

is geometrically similar to the lattice and can be used as the analogous 

shell to the hyperboloidal lattice. 

In circular cylindrical coordinates, independent of 0, the equation 

for the shell is 

a 

or, z = c/(r/r̂ )2 - 1 . 

Furthermore, 
dz _ c(̂ /̂ a) 

 ̂ r /(r/r )% - 1 

( 5 . h 9 )  

a 

For load analogy, the shell is to be loaded with a ring load of Pg, 

per unit length, and acting down at z = 0, of such intensity that, 

• 

a 

That this shell satisfies the conditions for it to be analogous to 

the lattice can be verified by comparing the shell analogy solution to be 
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obtained, with the one already obtained by direct consideration of the 

lattice. Thus, the correspondence of bar forces and shell traction 

resultants will not be explored. 

Considering a free-body diagram as shown in Fig. 5.H, and sum­

ming forces in the vertical direction, 

• '5.50) 

At the supports, using Z to denote the vertical component of K̂ , 

since r = r̂ ,  ̂  ̂ % 

2Ttr 
0 

while the horizontal component, X, acting in the radial direction, is 

W X = 
2irr tan 4> 

b 

Using the generalized expression developed in chapter three (equations 

3.7 through 3.10), 

I • 

I l + Zb 1 • 

But , tan $ = -ĵ i , 
dr!r̂  

thus, using the expression for dz/dr from equations 5.̂ #, and substituting 

its estimated value at r = r̂ y in the last expression for  ̂̂ i'̂ i» the 

latter one becomes, 

D a 
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iJJJ-LLU^ 

JJilLLLUi 

's = W/(2Trra) 

?ig. 5.11. Free-body diagram of the analogous hyperboloidal shell. 
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But, using the expression for ẑ , also from equations 5-49 (evaluated 

at r = r, ), this can be further reduced to, 
0 

I Fi-rj = W { + 2b 1 • (5.51) 
0 

For minimum ̂  

letting Fj-fi) _ g 

yields = /rg - r̂  . ($.52) 

Expression 5-52 can be seen to be identical to equation 5.47 for the 

latticed hyperboloid. 

Note also, that when is given by equation 5.$2, then from 

equations 5-49, c = r , (5.53) 
a 

and therefore, the slope of the inclined legs of the latticed hyperboloid 

is either 1 or -1, and they make an angle of 45® with their horizontal 

projections. 

Applicability of theorem to the shell 

For the hyperboloidal shell described in the previous section, the 

theorem of zero absolute potential energy (equation 2.10) can take the 

form, 
/% + /'e '"s = I Fi-fi • (5.5k) 
s s 

Its applicability will be demonstrated. However, it is convenient to 

first develop some expressions to be used. 

It can be shown that . Thus, by properly defining the thick­

ness of the shell, t_, it is possible to make a. = f„ and a a < f _ 
T 9 C 0 — C 

everywhere. 
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From equation 5-50» letting a = f , 
9  ̂

= ZTr f \in * ' '5*55) 
c 

To obtain an expression for Og, it is first necessary to obtain Kg 

U A 
and then, Og = — . (5-56) 

The value of N can be evaluated from consideration of the equilibrium 
6 

of a small element of the shell. Since there is no load perpendicular 

to the surface of the shell, 

= 0 . (5.57) 

Since the radii of curvature, R, and R., are of opposite signs, (a 
9 6 

hyperboloidal surface is anticlastically curved) it can be seen that 

both N, and N , and hence a, and o_ will be of the same sign (i.e. both 
96 9 @ 

compressive). 

For this shell, Ra = , (5.58) 
o sin (-) 

and R, can be evaluated from 

[ 1 + 

=« V Pi • (5-«) 

dr̂  

Upon using %he proper expressions for the derivatives in equation 5.59, 

can be expressed as. 

ré 
' - c" cosH • '5.G0) 
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Substituting expressions 5-58 and 5.60 into equation 5«57» and solving 

Ne . *] • (5.61) 
<!»[ z r j ' 

Noting that (cos <j))sin (}> = i sin 24» , it is verified that the ratio 

Ng/N̂  (and hence Og/Ô ) decreases as <|> decreases and z and r increase 

(i.e. as r increases from its minimum value of r̂ )̂. If equation 5.50 

is used in equation 5.61, the latter becomes, 

jj = W cos 4, _ (5.62) 
o 2-nz 

(At z = 0, expression 5.62 becomes indefinite since (ji = Tr/2 and 

cos $ = 0. However, by the proper substitutions it can be shown that 

Ng = N̂ , and consequently, Og = at r = r̂ .) 

With t̂  defined by expression 5.55» everywhere. Then, to 

demonstrate the applicability of equation 5.5k, it may be first rewritten 

as, 

Vs = F I ̂ i-̂ i - ite aVg . (5.63) 
c cs 

Die volume of the shell will be computed directly and con̂ ared with 

 ̂F̂ .r̂ . Then, by confutation of — /og dVg it will be shown that 
ĉ S 

equation 5.63 is an identity. 

The volume of the shell, Vg, can be computed as, 

Vg = /2nr t̂  d2 , 

where d£ is a differential element of length of a meridian. Using 

expression 5.55 for t̂ . 

_ W f d£ 
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After a change of variables, and entering the limits of integration. 

Vg can be expressed as, 

ib b̂ 

"s = f t I Tdsfe " I } •. 

° "-a '•a 

The second integral is simply ẑ . Then, using the expression for dz/dr 

from equations 5-̂ 9» equation 5.64 becomes, 

rb 

"s = F K * r f '""(r/r ) ̂  ) • (5.G5) 

r 
a 

The integral in equation 5 «65 can be integrated by a change of varia­

bles, Then, 

[ %b + tan-lf/Crt/r̂ )̂  - 1] 
<-1. D D 

Comparing equations 5-51 and 5-66, it is obvious that, 

Vg = J I F-.r̂ - I { &}r̂ tan-l[/(r̂ /r̂ )2 - 1] 

Thus, considering equation 5-63» it must now be shown that. 

(5.66) 

• <5.67) 

To evaluate the integral and verify the validity of equation 5«67» 

use the same differential element for dVg as was used before, then, 

7 I°Q ~ f r̂ ̂  ' 
•̂ c c r̂ 

Cancelling t̂ , and using equation 5.62, 

ir-̂  ̂  • 
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However, noting that (cos $)d£ = dr, and replacing z by its equivalent 

from equation 3-̂ 9» 

\ I c(r/r,)/?r/r̂ )̂  - 1 

"•a 

Where the limits of integration have been added. Integrating, 

ĵ /oq dVg = taD-l[/(r̂ /rĝ )'̂  - l] • (5-69) 

In equation 5-69» c can be expressed in terms of r̂ ,̂ r̂  and ẑ  by using 

equation 5•̂ 9» Making such substitution, equation $.69 yields, 

i/ag dVg = J { ̂  }̂r̂ tap-l[/(rb/ra)̂  - l]» (5.70) 
j-c -''C 4) 

Equation 5.70 is exactly as predicted by equation 5.67s and thus completes 

the demonstration of the applicability of the theorem of zero absolute po­

tential energy. 

It is to be noted that this demonstration was made for the general 

shell of this class, and thus not only for the one that minimizes 

I Fi-i . 

If  ̂f\.r̂  is to be minimized (for minimum volume of the lattice to 

which this shell is analogous), then, as shown by equation 5.52, 

 ̂ - rj • 

With that substitution, % F̂ .r̂  for the shell (equation 5.51) and for 

the lattice are identical, as they should be, while equations 5.66 and 

5.70 are somewhat simplified. 
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Volume of analogous shell 

In the process of demonstrating the applicability of the theorem 

of zero absolute potential energy, the volume of the analogous shell was 

computed as shown in equation 5'66. In the comparison of volumes which 

is the last section in this chapter, the numerical values for the 

volumes of the hyperboloidal shells were computed by subtracting the 

quantity, 
 ̂/°e dVg 
c 

from the corresponding volumes of the lattices. The quantity to be sub­

tracted was computed using equation 5-67 and the known value for 

(equation 5.52). 

Third Lattice Alternative - Free Form by Shell Analogy 

Lattice with constant slendemess ratio 

The second latticed alternative (hyperboloidal) has shorter unsup­

ported lengths between intersections than the first (conoidal), and does 

provide greater lateral stability by its inherent lateral bracing. Yet, 

all segments of the legs in either of those two designs carry equal axial 

loads. The second alternative has legs subdivided into segments of 

different lengths. Therefore, the different segments have different 

slendemess ratios. This variable load-to-length (T/L) ratio is a dis­

advantage since those portions or segments with the lesser T/L ratios 

(longer lengths) are more susceptible to buckling. Thus, it is desirable 

to explore the minimnm volume of a lattice to support the same system 

of loads, but with constant T/L ratios. The form of the lattice to 

fulfill such requirement will be obtained by a shell analogy. 
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Correspondence of bar forces and shell traction resultants 

Consider a typical bar of such a structure, as shown in Fig. 5.12. 

The bar is shown as it would appear projected on the plane which is 

tangent to the analogous shell at a point midway between the ends of the 

bar. If it is assumed that the lattice pattern will include only such 

typically inclined members, and no ring members (except perhaps at the 

top if required), then such typical bar must carry the membrane forces 

present in the element of the analogous shell whose projection on the 

tangent plane is also shown, dotted, in Fig. $.12 . The bar field 

distances, which define the portion of the shell whose membrane forces 

migrate to the bar, can be approximated by the average height, and width, 

of the trapezoidal shell element. The equivalent dimensions are labeled 

b^ and bg in Fig. $.12 to denote the bar field to be used for and Nq 

of the shell, respectively. 

Then, using T, and T. to denote the components of the bar force in 
9 o 

the ((i and 6 directions, respectively. 

and 

It then follows that. 

and. 
(5.71) 

(5.72) 

where a is the angle measuring the inclination of the bar (at the point 



www.manaraa.com

171 

Fig. $.12. îypical bar 



www.manaraa.com

172 

where Nq/N^ is being computed) with respect to the meridian passing 

through the midpoint of the bar. 

Observing equations 5-71 and 5-72, it is obvious that many shell 

classes (or lattices) are possible. The conoidal lattice and shell rep­

resent the class wherein a = 0, and consequently Ng = 0. (Of course 

in the conoidal lattice, a = 0 implies, by the geometry of Fig. 5-12, 

that b^ is equal to the width of the legs. The legs are then touching 

each other, and thus the analogous lattice and shell are one and the 

same.) The constancy of the T/L ratio from point to point in the lattice 

can be achieved by insuring that N , N and a be related as indicated by 
9 6 

equations 5«71 and 5.72. If a varies from bar to bar, then the ratio 

N /N will have to vary also from point to point in the analogous shell. 
8 y 

The class selected for this illustrative example will be the one in 

which a is constant and equal to U5° for all bars. Then and Ng will 

everywhere be constant and, 

K. = N„ = -^ = S (5.73) 
Ç o L 

where S is used to denote constant shell traction in all directions. Thus, 

althou^ the lengths of the bars will vary, the ratio T/L will be constant 

throughout. 

Shell analogy solution 

Shells in a membrane state of stress with constant traction in i 

directions (and of course constant stress with constant thickness, t) have 

been of interest to many investigators, as was already mentioned in previ­

ous chapters. In some cases, recourse was made to soap film analogies to 

determine their shape, since a soap film membrane, not being able to resist 
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shear, assumes a shape such that the membrane traction is constant, and 

equal to twice the surface tension of the particular soap solution used 

(since the film has two surfaces), regardless of the load imposed on the 

membrane. Harrenstien (15) used a system of loads exactly the reverse 

of that being considered here (the soap film is tension stressed). He 

also derived the analytical equation for the membrane shape. It is his 

work that inspired the use of this conceptual system of loads to illus­

trate the theory developed in this dissertation. Unfortunately, 

Harrenstien's membrane shape was uniquely determined by the surface ten­

sion properties of the soap solution he used (and, of course, by the 

weî ts and dimensions of his models) and was not the least volume 

membrane of its class. 

The general equations describing the geometry of this class of shell 

(constant S) will be independently developed here. The least volume shape 

will then be obtained by minimization of ̂  F̂ .r̂ . All the equations of e-

quilibrium must be used in developing the equations describing the general 

form for the class of the shell, and to express  ̂ in terms of only 

one variable (one degree of freedom) prior to optimizing it. 

A typical shell element is shown in Fig. $.13. The analogous lattice 

element is shown, dotted, in the same figure. The center node, and one-

quarter of the comer nodes of the analogous lattice lie within the shell, 

with their centers on the middle surface of the shell. Denote by the sub­

scripts V, R and T the vertical, radial and tangential components of S, 

respectively. 

The total load, W, on the shell is applied as before, at r = r̂ , as 

a ring load of intensity, Pg, per unit length as follows. 
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Fig. 5.13. Shell element. 
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Vertical equilibrium of a portion of the shell above an arbitrary 

r demands that Sy, the vertical component of S be, 

Sy = ̂  . (5-75) 
 ̂ 2Trr 

Furthermore, since no bending is present, if S is the horizontal com-
H 

ponent of S, g— = tan 4) , 3 
H 

while tan 4) =  ̂
dr * 

and S = /Ŝ  + 
V H 

Expressions 5-75 and 5«76 can be used to yield 

(5-76) 

1 w J 

Equation 5-77 is equivalent to Harrenstien's corresponding expression to 

which it can be reduced by the appropriate notation adjustments. Expres­

sion 5.77 is positive while Harrenstien's is negative, because he chose 

his origin at the lower level so that z decreases as r increases. The 

opposite is true here, with the origin as shown in Fig. $.13. 

Then, 
I Fi-fi = I + I » (5.78) 

where the subscript b indicates that the quantity subscripted must be 

evaluated at r = r̂  prior to the symbolic summation. 
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From equations 5-75» 5-76 and 5-77» 

W 
2:rr̂  ' 

\ = ' 

and. 'b = dr 

(5.79) 

Since r̂  and are constant for the purposes of evaluating equation 5.78, 

the summations of Sy and can be carried out separately. Then, 
b̂ % 

i K - h  = 1 + « 
dr 

#4^ 

(5 .80)  

The integral can be evaluated noting that , 

P- , U>1 . 

Performing the integration and collecting terms, 

I Fj.ri . W 1 

(5.81) 

If all members of the latticed structure are designed to be stressed 

to f , and if they conform to the requirements to be met for this shell to 
c 

be analogous (i.e. pattern as shown in Fig. 5.13, a = k3° for all members, 

and ml "I nodes lying in the middle surface of the shell when the lattice is 

-under the design load), then the lattice volume, V̂ , is 
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Vl = Y I Fi-ri , (5.82) 
C 

where ̂  F̂ .r̂  is given by equation 5.81. It is interesting to note that 

it has been possible to arrive at a general design for the lattice, and 

to a statement for its volume, prior to a definitive design, by means of 

the theorem of zero absolute potential energy. 

The variable in equation 5.81 is the S/W ratio. When the desired 

S/W ratio is selected, then the shape of the lattice (and shell) is de­

fined by the second term of the right hand side of equation $.81, which, 

with r̂  replaced by r, is the equation for z. That is, 

 ̂ - cch-'O) . (5.83) 

In addition, the lattice members can be designed directly from the previ-

ouly developed expression (equation 5-73), that 

S = T/L . 

The lengths of the lattice members can be found once n, the number of 

nodes around the periphery, is known. It may be necessary to adjust 

n (or conversely, r̂  ̂or r̂ ) to insure that a layer of nodes will corre­

spond to r̂ ,̂ r-jj and ẑ . This is so because, since a = 4$°, as soon as 

n (and consequently the spacing between adjacent nodes) is chosen, then 

the vertical distance between levels of nodes is also determined. 

Note that, 
S > , (5.8k) 
W - 2Trr„ a 

since lesser values yield imaginary solutions. When the "greater than" 

sign applies, the tangent to a meridian at r = r̂ , makes an angle, 4>g_, 



www.manaraa.com

178 

with the horizontal plane such that, 

(p̂  < ir/2 , 

and in that case the lattice needs a ring at r = r̂  ̂to equilibrate the 

radial component of S. For the shell, it is best to use a diaphragm or 

compression cap plate, rather than a ring, since then the entire shell, 

including such a plate, can be biaxially stressed to f̂  by properly-

selecting the thicknesses of the shell (constant) and of the diaphragm 

(also constant but not necessarily equal to that of the shell). It can 

be verified, by direct evaluation of the volume of such shell-plate 

structure that its volume, Vg, is, 

= 2f"% Fi'̂ i » 
c 

or one half the volume of the lattice, as it must be in accordance with 

the theorem of zero absolute potential energy. 

When the "equal" sign of equation 5.84 applies, then the tangent at 

r = r̂  is vertical and no ring is needed (for equilibrium) in the lattice. 

In the shell, the volume of the diaphragm can be shown to vanish in that 

case as the required thickness of the diaphragm becomes zero. There is an 

infinitesimally small discontinuity in Ng in that case at r̂  ̂since it must 

be zero there and equal to S as soon as r > r̂  ̂by an infinitesimal amount. 

Minimization of the lattice volume 

To obtain the S/W ratio that minimizes J F̂ .r̂ , and consequently 

Vy and Vg, is a complicated task not amenable to analytical treatment for 
Li D 

All values of r̂  and r̂  since both equations 5.81 and its derivative are 

transcendental equations. In an actual numerical example it would be 
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necessary to use the actual values of r̂  ̂and r̂  and minimize equation 5-81 

by numerical methods, or by obtaining a graphical solution to the equation 

which is obtained by equating to zero the first derivative of % F̂ .r\ with 

respect to S/W. 

To gain an insight into the range of S/W ratios that may yield a 

minimum volume structure of this class, equation $.81 will be rewritten 

in a slî tly different form. It will then be plotted. 

Assume that, g  ̂

W ' 

where, to rule out imaginary solutions (equation 5.84), 

c < r 
— a 

Then, equations 5.81 and 5.82 can be combined, and the resulting equation 

can be written as, 

V, = l̂-(c/r. + ̂ liî l̂+/l-(c/r, )2] - Ç̂ %i+/i_(c/r̂ )2] ] 
f C I. C b c 0 r̂  c  ̂ j ' 

(5.85) 

The three terms of the right hand side of equation 5.85 are separately 

plotted (signs included), and also added together, in Fig. 5.1b. A ratio 

of r̂  ̂to r̂  of 5/8 was selected to show in greater detail the significant 

portion of the plot. Other plots of the third term (the only one affected 

by the value of r̂ /r̂ )̂ are shown in dotted lines. 

To the right of the hashed boundary lies the region forbidden by the 

requirement that c ̂  r̂ .̂ The minimum volume is obtained by a c value 

close to but less than r̂ .̂ For the given r̂ /̂r̂  ratio (5/8), the optimum 

c is graphical!y estimated to be 0.93(rĝ ). Such a reduction of c from 
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Fig." 5.1k. Plot of equation 5.85. 
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c = achieves only a small reduction in the volume (less than 3 % ) ,  

but a drastic reduction in the overall height, of the structure (about 

39% reduction based on the corresponding to c = r̂ )̂. (A nondimension-

al plot of Zy is also shown in Fig. $.l4.) Furthermore, c could be as 

small as 0.88(rĝ ) and the volume would still be equal to or less than 

that of the structure with c = r̂ .̂ (With c = 0.88(rĝ ), is only kY% of 

its value when c = r̂ .̂ ) Thus, if the height of the structure is an impor­

tant factor, then the choice of c, and consequently of S/W, should be 

carefully investigated. The latitude on the choice of c is less, and its 

effect on much reduced at much lesser values of r̂ /̂r̂ . 

For the volume comparisons of the section that follows, it is as­

sumed, for ease of computations, that the minimum volume of this class 

of structures corresponds to c = r̂ .̂ In that case, can be expressed, 

using equation $.83 evaluated at r = r̂  ̂and with S/W = l/(2nr̂ ), in the 

equivalent form, 

 ̂ ln[ r̂ /r̂  + /(?%/?%)' " • (5.86) 

Similarly, from equation 5.77, 

a b 

where, as before, $ = 4̂ » 

Volume Comparisons and Observations 

Using equations 3-7 through 3.10, the volumes of the three latticed 

alternatives considered can be expressed as, 

Vn = ̂  t '/'a • (5.88) 

where tan $ is the tangent to a meridian in the analogous shell at r = r̂ . 
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and z is the overall heî t, that correspond to V . . 
min 

The corresponding expressions for tan $ and z, as developed earlier, 

are collected below using the original equation numbers for reference pur­

poses. 

1. Conoidal lattice: 

tan $ =  ̂-— , (5.7) 
1 - V̂ b 

and, z = ry(ẑ /r̂ )̂  - r̂ /r̂  • (5-9) 

2. Hyperboloidal lattice: 

' / 1 -

and, z = r̂ /(r̂ ,/r̂ )̂  - 1 . (5.k8) 

3. Lattice of constant slendemess ratio, for c = r (not for V . ): 
min 

r 

' / X 

and, z = r̂  ln[ - 1 ] • (5.86) 

The heists of the structures, z, and the corresponding volumes are 

plotted in Fig. 5.15 for varying r̂ /r̂  ̂ratios. 

In Fig. 5.15, the hyperboloidal and conoidal lines approach each other 

for higher values. This is as should be expected, since r̂ /r̂  = 

implies that r̂  ̂is zero and then, the hyperboloidal lattice is indistin­

guishable from the conoidal. Then, tan $ = 1, and z = r̂  for both. 

It is to be noted, as predicted by the first alternative design, that 

the volume of the conoidal lattice is a global minimum for the lattices. 

As additional restraints are placed on the geometries of the lattices (i.e. 

hyperboloidal, lattice of constant slendemess ratio) the minimum volume 
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8.0 Lattice of constant T/L 

Hyperboloidal lattice 

•Conoidal lattice 

Conoidal shell 

S3 

fij-'perboloidal shell 

; 3.0 

2.0  
Shell of constant S 

1.0 

Hyperboloidal lattice and shell 

f h.Q 

3.0 
Conoidal lattice and shell 

•H 

•Lattice of constant T/L-Shell of constant S 1.0 

4.0 5.0 3.0 2.0 1.0 

Fig. 5.1$. Heights and volumes of alternative structures. 
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increases. For low r̂ /r̂  ratios (up to about 1.8), the lattices of 

constant slendemess ratios have an optimum z greater than the conoidal 

lattices but less than for hyperboloidal lattices. 

The volumes of the analogous shells are also shown. The conoidal 

shell volume is the same as that of the conoidal lattice. The volume of 

the shell of constant traction (constant S) is one-half that of the lat­

tice of constant slendemess ratio. (Since c = r̂  for the volumes shown, 

the shell does not have a plate, and the lattice does not have a compres­

sion ring. If c # r̂ , then the ring and plate would have to be provided, 

but the volume of the shell would still be one-half that of the lattice 

since the shell-plate structure would be entirely biaxially stressed to 

f̂ . ) The volume of the hyperboloidal shell is less than that of the hyper­

boloidal lattice by the amount — /og dVg which was computed using equa-
c 

tion $.67. 

The hierarchy for the shells is the reverse of that of the lattices. 

That is, the conoidal shell, which is uniaxial!y stressed, always has a 

minimum volume larger than that of the hyperboloidal shell, which has some 

stress in the tangential direction in addition to being fully stressed in 

the meridional direction. The shell of constant traction, being biaxially 

stressed to f̂  (and thus of constant stress, f̂ ), is capable of providing 

a minimum volume less than that of either of the other two alteimatives 

for r̂ /r̂  ̂ratios of up to about 2.2. For larger r̂ /r̂  ratios, the least 

volume structure of constant S has a volume larger than the other two. 

It is felt that the volume of the fully stressed (constant S) shell 

is greater than that of the others at the greater ratios because it 

represents a class of structures so different from that of the other two. 
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that the load systems (including the reactions) are no longer com­

parable. 

jQie conoidal and the hyperboloidal shells can be considered to be two 

sub-classes of a larger class of shells, i.e. those that can be generated 

by straigiht lines generatrices. That they become one and the same when r̂  ̂

is zero, has already been pointed out. Note also that the conoidal lat­

tice (or shell) can be generated by letting m = 0 in the expressions 

mathematically defining the hyperboloidal lattice (equations 5.b4), in 

which case, d = r̂  (equation $.45). Comparing equations 5.38 and 5.39 

with equations 5.̂  it can be seen that then the volumes for both sub­

classes become identical for all r̂ .̂ Furthermore, note the similarity 

of expression of  ̂F̂ .r% in that, for minimum % F̂ .r̂ , 

I = 2Wz (5.89) 

for both. The contribution of the horizontal forces and the vertical 

forces are equal to each other in each of the two structural sub-classes. 

They differ only in the expression found for z in each shell. Thus, the 

load systems of both represent generally comparable systems in the sense 

implied in the hierarchy of structural levels of chapter two. Since the 

conoidal lattice is a global optimum for the larger class, it follows that 

the volume of the hyperboloidal lattice would never be less. Furthermore, 

it also follows that, since the hyperboloidal shell is also stressed in the 

tangential direction (albeit not to f ), then the volume of the conoidal 
c 

shell, which is always stressed uniaxially, should never be less than that 

of the hyperboloidal shell. 
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In contrast, the constant S shell cannot be generated by straight 

lines, and could never be made to occupy the same space of either of the 

other two by adjusting the variables which define it. Furthermore, its 

load system cannot be considered fully comparable to either of the other 

two. Note that when  ̂̂ i'̂ i  ̂minimum for this shell (or lattice) 

it does not fulfill the condition expressed by equation 5-89. In addi­

tion, the contribution of the horizontal forces (to J F̂ .r̂ )̂ is much 

larger than that of the vertical forces, the disparity becoming more 

pronounced with larger r̂ /r̂  ratios. Thus, this class is more efficient 

(yields a lesser volume) for some r̂ /r̂  values, and less efficient for 

the higher r̂ /r̂  ̂ratios when the horizontal thrusts must increase greatly 

to keep the stress trajectories within the shell. In those cases (the 

larger r̂ /r̂  ratios), it is felt that the condition of constant S becomes 

a constraint which requires greater material energy than that needed to 

support the loads. That is, the tangential stress is needed to bend the 

stress trajectories and force them to remain within the structure. (In 

the same vein, the most efficient of all classes of structures for this 

system of loads would be one in which it is permissible to make r̂  = r̂ ,̂ 

a trivial solution resulting in a requirement for zero volume and zero 

stresses in a non-existent structure.) 

In summary, this series of examples illustrates the method of appli­

cation of the theorem (classical and shell analogy); it shows the corre­

spondence of  ̂F̂ .r\, volume and geometry for shells and lattices; and, 

it demonstrates the general applicability of the hierarchy of structures 

of chapter two. It is cautioned that in searching for a superior class 
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of structures, a check on the magnitude of J] F. .r. should be made so 

that it is not unduly increased in order to force the new structural 

class to apply. 
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SUMMARY MD CONCLUSIONS 

This dissertation developed a new theorem named the theorem of zero 

absolute potential energy whose mathematical expression is 

m n _ 
I { /ô dVj + /ogdVj + /CgdVj } - I F..?. = 0 . 

The mathematical expression is valid for all three-dimensional structures 

in internal and external static equilibrium under any system of loads. The 

expression is a generalized form of Maxwell's theorem for frameworks. 

The theorem was used to develop a hierarchy of structural levels 

arranged in order of increasing material efficiency according to the state 

of stress existing in the structures belonging to each level. From this, 

it is concluded that the most efficient structures to support a given sys­

tem of loads would be those which are fully and homogeneously stressed (all 

in tension, or all in compression). The least volume structure among those 

fully and homogeneously stressed will be the one with the least numerical 

value for X F̂ .r̂ . Triaxially stressed structures fulfilling the above re­

quirements have lesser volume than biaxially stressed structures, which, in 

turn, have lesser volume than uniaxially stressed structures. Least volume 

statically determinate and statically indeterminate structures, if they are 

possible, provide the same volume when optimized with respect to a single 

system of loads and if their respective % F̂ .r̂  values are of the same 

magnitude. 

The above observations and conclusions led to a concept of optimization 

by variation of F̂ .r̂  wherein the points of application of the loads are 

allowed to vary along the line of action of the loads as the configuration 
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of the structure is varied. 

A sequence of examples of the synthesis of alternate structures for 

the support of the same loads was presented. These exaaçles illustrate 

the observations made above, as well as the transitions from one hierar­

chical level to other more efficient levels. 

The theorem, when coupled with the concept of variation of ̂  F̂ .r̂  in 

the structural synthesis of least volume structures, results in significant 

simplifications of the optimization process. The number of variables is 

greatly reduced in the case of statically determinate structures. As a re­

sult, only the constraints of statical equilibrium need be considered. In 

general, the detailed design of the structure need not be addressed until 

after the optimum form of the structure is determined from the optimization 

process. 

Three optimization methods utilizing the above concepts were developed 

(classical, nonlinear programming, and shell analogy) for application 

to three-dimensional nonplanar lattices. These were illustrated in the 

optimization of rectangular grid lattices, network domes, and Schwedler-

like domes. A means to consider the volume of the tension ring, if pre­

sent, was also illustrated. 

The classical method is also directly applicable to shells in a memr-

brane state of stress (the most efficient state of stress for shells) if 

their shape is restricted to a specific class (hyperboloidal, paraboloidal, 

etc.) expressible in a closed-form, integrable function. In general, these 

shapes will allow the shells to be fully stressed in only one direction. 

The optimization of a paraboloidal shell is presented as an illustration. 
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Possible v&ys are indicated for the extension of the method to the optimi­

zation of more general shapes. These include the use of numerical integra­

tion methods, or the incorporation of the minimization of J F̂ .r̂  into the 

method developed by Smith and Wilson (32) for the synthesis of membrane 

stressed shells. 
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APPENDIX - ALTERNATE DERIVATION OF THE THEORM OF 
ZERO ABSOLUTE POTENTIAL ENERGY 

The equations of equilibrium of a differential element of a struc­

ture (Fig. 3.1) are 

3x 3y 3z 
= 0 

and 3z 3y 3x 
= 0 

Equations A.l can be arbitrarily multiplied as follows. 

/ / / [  
z y X 

!!ï. + i!s !!H. 
3z 3x 3y 

] X dx dy dz = 0 , 

and 

/ / / [ 3̂  + 5̂  ] y dx ay di = 0 . 

!  !  I l  
z y X 

3a 3%. 
—- + —̂  
3z 3y 

15. + ̂ %̂z 
3x 

] 2 dx dy dz = 0 , , 

(A.l) 

(A.2) 

without altering their validity. 

Each of the three equations A.2 results in the addition of three 

integrals of which the following expression is typical. 

Ill -r—^ X dx dy dz 
z y X 

I I I  X  dx dy dz +/ / / x dx dy dz = 0 
z y X z y X 

(A.3) 
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In general, using integration by parts. 

/ g'(x) k(x) dx = g(x) k(x) - / g(x) k'(x) dx (A.k) 

The integrations indicated in equations A.2 will be carried out over 

the entire structure (or over the entire range of x, y and z in the struc­

ture) of which the element is a part. 

Applying equation A.it to the first term of equation A. 3, 

x„ 
3o 

I I I  X dx dy dz = // [x â ] dy dz - ///o dx dy dz . (A.5) 

The second term of equation A.3 becomes. 

3T • 
I I I  dy X dx dz =  I I  [ ^ x y ]  X dx dz - Ill'̂ xy (O) * ̂  <3.z 

1 
(A.6) 

Similarly, the third term of equation A.3 can be written as. 

3T 
dz X dx dy = // [t̂ ]̂ X dx dy - (O) X dx dy dz . 

(A.7) 

Thus, considering equations A.5, A.6 and A.7, equation A.3 becomes. 

//tx dy dz + //[t ]̂ 

X.  

2̂ 

x .dx dz + //[t ẑ] 

y 

xdxdy-///a^ dx dy dz = 0 

1 "1 1 (A.8) 

Similarly, the other two of equations A.2 would give rise to expressions. 
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I f l y  Oy] 

and. 

//[z 

^2 

dx dz + 

?! 

y ay dz + 

dx dy + //[tŷ ] z dz dx + 

yi 

y dy dx - ///cfy dx dy dz = 0 > 

(A.9) 

z dz dy - jjjo dx dy dz = 0 

'1 -yi (A.10) 

Note that in expression A.8 the double integration terms represent the 

sum of "magnitude of force component in x-direction multiplied by the 

x-coordinate of its point of application" for all external boundary forces. 

Defining this sum by ̂  x̂ , the ejgression A.8 can be rewritten as. 

I X. X. - /a dV = 0 
i V 

Similarly, from expressions A.9 and A. 10, 

I Yi - /oy dV = 0 

(A.n) 

(A.12) 

and. I Zi - /Og dV = 0 (A.13) 

Although equations A.11, A.12 and A.13 could be useful in some cases, 

it is more useful, for the purposes at hand, to add them to yield, 

K + /a„ dV + /o dV = I Xi Xi + I Yi yi + I Zi ẑ  U.lk) 
V V V i i i 

An arbitrarily oriented boundary force could have x, y and z compo­

nents present in three terms of the rî t hand side of equation A.lk. The 

right hand side could be expressed in the statically equivalent form 
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I where is the force vector at point i, and is its respec­

tive position vector. Then, equation A.l4 can be expressed as, 

/â  dV + foy dV + /Oj, dV =  ̂F̂ .r̂  (A.15) 
i 

In equations A.l "body forces were assumed to be zero for clarity. If 

body forces are present, the terms to be added to equations /..8, A.9 and 

A.10 would be, respectively, 

/// X X dx dy dz » 

///Yydxdydz , 

and f j f  Z z d x d y d z  »  

where X, Y and Z are the body forces per unit volume in the x, y and z 

directions, respectively. These terms are directly analogous to those 

of the boundary forces to which they could be added. Thus, the rî t hand 

side of equation A.15, f\.r̂ , must include the contributions of the body 

forces if they are present. 

Equation A.15, identical to equation 2.10, is a mathematical expres­

sion of the theorem of zero absolute potential energy. 
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